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Question Answering

@ Human annotated high quality but small dataset

o Large scale dataset through semi-annotated techniques but far from
natural language
e Stanford Question Answering dataset(SQuAD)

o Larger than all previous hand-annotated datasets
e Various qualities
e Answers are spans in a reference document
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Related Work

e Statistical QA
o Rule-based algorithms
o Linear classifiers over feature sets: lexical features(bag of words), word
distance, word order, pos_tag, dependency parse

@ Neural QA

o NLI(natural language inference) : match LSTM encoder + pointer
network decoder,

e dynamic chunk reader: extract answer candidates and rank

o hierarchical co-attention model
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Overview

End-to-end neural network for question answering:

@ A coattention encoder captures the interaction between the question
and the document

@ A dynamic pointing decoder alternates between estimating the start
and end of the answer span

Caiming Xiong, Victor Zhong, Richard SocheiDynamic Coattention Networks for Question , )




Overview

End-to-end neural network for question answering:
@ A coattention encoder captures the interaction between the question
and the document
@ A dynamic pointing decoder alternates between estimating the start
and end of the answer span

Dynamic pointer
. decoder
Coattention encoder —> s
start index: 49
end infex: 51
\eam turbine plants
Document encoder Question encoder
The weight of boilers and condensers generally
makes the power-to-weight ... Hovever, most What plants create most
electric power is generated using steam turbine electric power?
plants, so that indirectly the world's industry
is ...

Figure 1: Overview of the Dynamic Coattention Network.
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Document and Question Encoder

@ Sequence of word vectors in document:
(xP, xP ... xP)
= dy = LSTMepc(ds—1,xP)
= D =[d...dndy] € R>*(m+1)

@ Sequence of word vectors in document:
(- x8) o
= qt = LSTMenc(qt—laXt )
= Q' =[q1...qngy] € R*("D)
= Q = tanh(W(Q Q' + b(Q)) ¢ RI*(r+1)
(allow for variation between question encoding space and document
encoding space)

@ dy and qgy4: sentinel vector
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Coattention Encoder
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Figure 2: Coattention encoder. The affinity matrix L is not shown here. We instead directly show
the normalized attention weights A” and A%.
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Dynamic Pointing Decoder

hi = LSTMuyec(hi_1, [us, 1; te. ,]), U = [u1,. .., um] € R?*™ from encoder

u

argmax s; : 49
(steam)

Uﬂﬂﬂﬁ

48 49 50 51

NAH

Figure 3: Dynamic Decoder. Blue denotes the variables and functions related to estimating the start
position whereas red denotes the variables and functions related to estimating the end position.
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Dynamic Pointing Decoder

hi = LSTMgec(hi—1,[us;_,; ue;_,])

Given current hidden state h;, previous start position us; , and previous
end position ue, ,, how to estimate the current start position s; and
current end position ¢;?

s; = argmax(aq, ..., am)
ar = HMNstart(Uh hi, Us;,_,, ue,',l)
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Highway Maxout Network(HMN)

HMN (u, by, us, .t ) = max(WO[mP; mP] + 63) (1)
r = tanh(WP)[hj; ug,_ . ue,_,]) 2)
m{®) = max(WO[ug; r] + b)) (3)
mgz) = max( W(2)m§1) + b(2)) 4)

Figure 4: Highway Maxout Network. Dotted
lines denote highway connections.
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Model DevEM DevFl TestEM TestFl
Ensemble

DCN (Ours) 70.3 794 71.2 80.4
Microsoft Research Asia * - — 69.4 78.3
Allen Institute 69.2 71.8 69.9 78.1
Singapore Management University * 67.6 76.8 67.9 77.0
Google NYC * 68.2 76.7 - —
Single model

DCN (Ours) 65.4 75.6 66.2 75.9
Microsoft Research Asia ™ 65.9 75.2 65.5 75.0
Google NYC * 66.4 74.9 - —
Singapore Management University * - — 64.7 73.7
Carnegie Mellon University * - — 62.5 73.3
Dynamic Chunk Reader (Yu et al., 2016) 62.5 71.2 62.5 71.0
Match-LSTM (Wang & Jiang, 2016b) 59.1 70.0 59.5 70.3
Baseline (Rajpurkar et al., 2016) 40.0 51.0 40.4 51.0
Human (Rajpurkar et al., 2016) 81.4 91.0 823 91.2

Table 1: Leaderboard performance at the time of writing (Nov 4 2016). * indicates that the model
used for submission is unpublished. — indicates that the development scores were not publicly
available at the time of writing.
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Model DevEM  Dev Fl
Dynamic Coattention Network (DCN)

pool size 16 HMN 654  75.6
pool size § HMN 644 749
pool size 4 HMN 652 752
DCN with 2-layer MLP instead of HMN 63.8 744
DCN with single iteration decoder 63.7 740

DCN with Wang & Jiang (2016b) attention 63.7 737

Table 2: Single model ablations on the development set.

Caiming Xiong, Victor Zhong, Richard SocheiDynamic Coattention Networks for Question ,



@ An end-to-end neural network architecture for question answering

@ On the SQuUAD dataset achieves the state of the art results at 75.9%
F1 with a single model and 80.4% F1 with an ensemble.
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