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y-based Learning

@ Energy function: viewed as a negative log probability density

@ Probabilistic View:

» Produce a probability density P(YIW)
function that:

» has high value in regions of
high sample density
» has low value everywhere else

(integral = 1).

~<

@ Energy-Based View:
» produce an energy function
E(Y,W) that: E(Y,W)
» has low value in regions of high
sample density
» has high(er) value everywhere
else

Figure: hello
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Energy-based Learning

@ Make the energy around training samples low

@ Make the energy everywhere else higher
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Associative Memory

N binary neurons with values 4+ 1
A configuration of all neurons is denoted by vector o.
The model stores K memory vectors, denoted by &+

The model is defined by an Energy function:

N N
ZUITi,jUj; T;j= Zf“f# (1)

i=1 j=1 p=1
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Associative Memory

@ NN binary neurons with values £+ 1

@ A configuration of all neurons is denoted by vector o.
@ The model stores K memory vectors, denoted by &
o

The model is defined by an Energy function:

N N
ZUITi,jUj; T;j= Zf“f# (1)

i=1 j=1 p=1

This energy model gets confused when many memories (i.e. large K)
are stored because several memories produce contributions to the
energy which are of the same order.
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Dense Associative Memory: Higher Order Interactions in

Energy Function

@ New energy function:
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Dense Associative Memory: Higher Order Interactions in

Energy Function

@ New energy function:

K N
E==Y F(D ¢&oi) (2)
u=1 i=1
@ Polynomial energy function: F(x) = x"
- : x", x>0
@ Rectified energy function: F(x) =
0, x<0

@ As n increases, more memories can be packed into the same space
because each term becomes sharper

small large n

energy
energy
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Classification with Dense Associative Memory
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Human Pattern Recognition: Feature Matching vs

Prototype

Electrical signal
from brain

Visual area
of brain Recording
electrode

Stimulus
(a) Feature Matching (b) Prototype Effect
(Hubert & Wiesel 1959) (Solso & McCarthy, 1981)
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Human Pattern Recognition: Feature Matching vs

Prototype

Electrical signal
from brain

Visual area
of brain Recording

electrode

Stimulus
(c) Feature Matching (d) Prototype Effect
(Hubert & Wiesel 1959) (Solso & McCarthy, 1981)

@ Instead of decomposing the input into a set of features and then
matching these features, the whole image can be compared to
memorized prototypes and classification can be made based on the
similarity between the test image and prototypes.
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Transitions

K N 1

............

14%  1.6% 1.8%

feature detectors prototype detectors
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Duality b/w Neural Nets and Associative Memory
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Duality with Activation Functions

AM: n=1 n=1 n =2 9
standard DAM
Hopfield net
flx) = l, [(x) = ReLU J(x) =RePy

|

z | x T

ReLLU ReP,, for n =~ 20
feature M prototype
small n large n
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Conclusions

@ Duality between Associative Memory and feed-forward neural nets.

o Feature to prototype transition in feed forwards nets can be induced
by changing the power of the activation functions

ReLU feature-to-prototype transition ReP,,
feature Mfor n — oo
small n

n ~ 10...30 nearest neighbor
classification
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