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Energy-based Learning

Figure: hello
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Associative Memory

N binary neurons with values ± 1

A configuration of all neurons is denoted by vector σ.

The model stores K memory vectors, denoted by ξµ

The model is defined by an Energy function:

E = −1

2

N∑
i=1

N∑
j=1

σiTi ,jσj , Ti ,j =
K∑
µ=1

ξµi ξ
µ
j (1)

This energy model gets confused when many memories (i.e. large K )
are stored because several memories produce contributions to the
energy which are of the same order.
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Dense Associative Memory: Higher Order Interactions in
Energy Function

New energy function:

E = −
K∑

u=1

F
( N∑
i=1

ξui σi
)

(2)

Polynomial energy function: F (x) = xn

Rectified energy function: F (x) =

{
xn, x ≥ 0

0, x < 0

As n increases, more memories can be packed into the same space
because each term becomes sharper
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Classification with Dense Associative Memory

E = −
K∑

u=1

F (
N∑
i

ξui vi +
10∑
α

ξuαvα), F (x) =

{
xn, x ≥ 0

0, x < 0
(3)
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Human Pattern Recognition: Feature Matching vs
Prototype

(a) Feature Matching
(Hubert & Wiesel 1959)

(b) Prototype Effect
(Solso & McCarthy, 1981)

Instead of decomposing the input into a set of features and then
matching these features, the whole image can be compared to
memorized prototypes and classification can be made based on the
similarity between the test image and prototypes.
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(c) Feature Matching
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Transitions

E = −
K∑

u=1

F (
N∑
i

ξui vi +
10∑
α

ξuαvα)

F (x) =

{
xn, x ≥ 0

0, x < 0

1.5% 1.4% 1.6% 1.8%

feature detectors prototype detectors
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Duality b/w Neural Nets and Associative Memory

NN: hu = f (
N∑
i

ξui vi )

DAM:E = −
K∑

u=1

F (
N∑
i

ξui vi +
10∑
α

ξuαvα)

f (x) = F ′(x) (4)
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Duality with Activation Functions
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Conclusions

Duality between Associative Memory and feed-forward neural nets.

Feature to prototype transition in feed forwards nets can be induced
by changing the power of the activation functions
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