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Model-Based RL

@ Two types of reinforcement learning

e Model-free: Q-learning, Actor-Critic
o Model-based: learn model of environment

o RL 4-tuple: (S, A, R, T) — (state, action, reward, transition)

e T(s'|s,a) not known - can learn via model
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e Model-based methods inferior to model-free methods (Q-learning,
actor-critic) for RL based on raw input

@ Model-based RL: learn model of environment, use for planning

@ Environment model trained independently of planning step - model
may be suboptimal for task
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Architecture

@ Four components:

o State representation s = f(raw)

o Model s',r,v = m(s, )

o Value function (future internal return) v = v(s)

e Accumulator - combines internal r,~, v into overall value g
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Accumulators

@ k-step predictron

o Roll model forward over k steps

o gh=rt 4P+ P (T AR+ 4RvR)L)
@ \-predictron

o Combine k-step preturns

o \¥ - weight matrix
K

o gt =Y wkgk, w product of \'s
k=0
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Learning Updates

@ k-step predictron

1
Lh = §||Ep[g|5] — Emlg"|s]|?

V Sample loss: %—’g =(g— gk)%ggk

@ M\-predictron - average preturn losses
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k=0
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Experiment Contexts

@ Mazes

e 20 x 20 random maze

e Consider locations along top-left bottom-right diagonal

o Objective: are diagonal points connected to bottom-right?
e Pool

e 4 balls, 4 pockets

e Implemented in graphical physics engine - image frames

o Objective: predict events (collisions, entering quadrants, entering
pocket
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Architecture Variants

Three dimensions of predictron
©@ MRP model structure

e MRP: internal rewards/discounts learned
o non-MRP: internal rewards/discounts ignored (set to 0 and 1)

@ K-step or A accumulator
© Usage weighting
o Weight k preturn losses using w* weights (from A-weighting)
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Architecture Variants
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Comparison to Other Deep Nets

Three dimensions

@ Model type

o (r,v,A)-Predictron
o Other deep net (feedforward/recurrent)

@ Weight sharing

o Cores share weights (recurrent)

o Cores have separate weights (feedforward)
© Skip connections

o Output As: sk1 = H(s* + Ask)

o Deep network + skip connections = ResNet
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Comparison to Other Deep Nets

Shared core Unshared cores

0.01

A%

reptupta NICIGL

0.001

— deep net
— = deep net with skips
0.0001 [— (1,4 A)-predictron

= = (r,7,A)-predictron with skips

0 iM 2M 3M 4aM 5M 0 iM 2M 3M 4M 5M
\
. \-—\__\_
\
N
~
)

-
e e .

RMSE on random mazes
(log scale)

RMSE on pool

0 500K M 0 500K M
Updates Updates

David Silver, Hado van Hasselt, Matteo Hess¢The Predictron: End-to- Learning and PIACLR, 2017/ Presenter: Anant 17 / 20



Outline

© Experiments

@ Analysis of Depth

David Silver, Hado van Hasselt, Matteo Hess¢The Predictron: End-to-End Learning and PIdCLR, 2017/ Presenter: Anant



Analysis of Depth

@ Predictron can adapt "depth” based on task

@ Depth - number of model steps
@ Properties:

o Different prediction - different depth
o Depth ~ discount

o Distributions not strongly peaked - depth can differ
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Summary

@ Traditional model-based RL trains model independent of planning

@ Predictron: end-to-end differentiable architecture for
learning/planning

@ Outperforms other model-based approaches on random mazes, pool
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