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@ Deep Reinforcement Learning is successful: DQN play ATARI games
at above human performance.

@ However:

e Very costly to train: Need a lot of time and data
o The training process is unstable. Many tricks introduce to make the
process stable.

@ People often think in the multitask learning, a task will require less
data and achieve a higher asymptotic performance (i.e., other tasks
helps). However, it's often not true in the real case.

o It is likely that gradients from other tasks behave as noise, interfering
with learning, or, in another extreme, one of the tasks might
dominate the others.
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Motivation

@ Motivation: Find an efficient and stable way for multitask RL
@ Baseline: Multitask A3C algorithm
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Overview of Distral: DIStill and TRAnsfer Learning

regularise distill

@ Learn a global policy mg

@ Use a KL divergence regularizer to produce task-specific policies

o Knowledge learned on one task are distilled into the shared policy,
and transferred to other tasks.
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Background: Multitask RL

Notations of Multitask RL

A multitask RL setting:
@ n tasks

@ an infinite horizon with discount factor ~
@ a € A are actions, s € S are states.
°

Transition function p;(s’|s, a) and reward R;(a, s) is different for each
task i.

e 7;: task specific stochastic policies

We want to optimize the expectation of reward, that is

Z Er, [Z v'Ri(at, st)]

t>0
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@ Learn a global policy mg

o KL regularization: Ensure every task S)O“Cy share information with the
shared policy: Ex,[3,50 7" log 221

o Additional entropy regularization to encourage exploration:
Er, [y log mi(ae|st)]

@ Total loss function:

J(mo, {mi}io)
= ZEW,[Z’Y R atast - CKL’Yt log (( || t)) - CEnt”Yt |087Ti(3t’5t)]

t>0
1
= ZEW, D A (Ri(ar,se) + - ~ log mo(arlse) — - log mi(ar[se))]
t>0 ﬂ IB
_ C| _
a = cm-fég,,t B CKL+CEnt
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e )1-0) = S Bn (3 (o) 5 tog mo(a ) log (e[ )
t>0

o Let Ri(a,s) = Ri(at, st) + 3 log mo(at|st), the previous objective
function becomes a regularized optimization on a new reward.

o Entropy regularization with a new constant.
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Soft Q-Learning

@ Bellman equation
Vi(st) = maaX(Qi(ar, st))
t
Qi(at, st) = Ri(ar, st) ""szf(st“‘l‘st’ 2e)Vi(sti1)
St

@ Soft Q-Learning[Derivation included in Equivalence Between Policy
Gradients and Soft Q-Learning]:

1

Vi(St) = E

Qi(at, st) = Ri(ae, se) + Z pi(se+1lse, ar) Vi(se+1)

St

log(Y_ molarlse)” exp[BQi(ar, st)])

@ The idea is to use a Softmax function at the inverse temperature (5 to
approximate the Bellman equation. When 8 — oo, Softmax turns
into Max.
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Soft Q-Learning in DisTral

@ The optimal policy [from Equivalence Between Policy Gradients and
Soft Q-Learning]

(6 7T,'(at|5t)
B g 7TO(3t|5t)]
)eBQ;(st,at)fﬂV;(Sr)

BAi(st.a0)

mi(at, st) = arg mﬂax[E,r[Q,-(st, ar)] —

= 7r8‘(at|st

= 70 (at|st)

A; here is an advantage function.

@ Unlike previous literature, 7 is learned.

e mo is updated using the loss 3 > E[5 log mo(at|st)]
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Parameterization

@ It is possible to simply assign each 7; a neural network and 7 a
neural network, and update them using policy gradient.

@ However, maximize 7; and mg alternatively could be slow.

@ Need a better way for a joint optimization

@ Method: 1. Parameterize mg by

2o — XPUhoo(2rls0))
> exp(hgy(at]st))
2. Parameterize A; = Q; — V; by
1
B

In the case, the policy for task i becomes

exp(ahgy(at|st) + B, (at|st))
> exp(ahgy(at|st) + Bfy,(atlst))

Ai(at|st) = f5,(atlst) log > _ #5(alst) exp(Bfy, (alst))

ﬁ;(at|st) =
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Algorithms

DisTra Learning
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Figure 2: Depiction of the different algorithms and baselines. On the left are two of the Distral
algorithms and on the right are the three A3C baselines. Entropy is drawn in brackets as it is optional
and only used for KL+ent 2col and KL+ent 1col.
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Experiment: Algorithms

| o, (als) fo.(als) ahg, (als) + Bfo,(als)
a=10 A3C multitask A3C A3C 2col
a=1 KL 1col KL 2col
0<a<l KL+ent 1col KL+ent 2col

Table 1: The seven different algorithms evaluated in our experiments. Each column describes a
different architecture, with the column headings indicating the logits for the task policies. The rows
define the relative amount of KL vs entropy regularization loss, with the first row comprising the
A3C baselines (no KL loss).

o Comparing 7 algorithms
@ Entropy regularization vs No entropy regularization

@ lcol(Alternative optimization) vs 2col(joint optimization)
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Small example: Two room grid world

Training tasks Four different examples of GridWorld tasks Policy in the corridor if previous action was:
“left

I

Policy in the corridor if previous action was:

Figure 3: Left: Learning curves on two room grid world. The DisTraL agent (blue) learns faster,
converges towards better policies, and demonstrates more stable learning overall. Center: Example
of tasks. Green is goal position which is uniformly sampled for each task. Starting position is
uniformly sampled at the beginning of each episode. Right: depiction of learned distilled policy 7
only in the corridor, conditioned on previous action being left/right and no previous reward. Sizes of
arrows depict probabilities of actions. Note that up/down actions have negligible probabilities. The
model learns to preserve direction of travel in the corridor.

@ Distral converge faster than single task case

o Distral successfully learn a distilled policy in the corridor that
conditioned on the previous move
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Complex case

@ Three complex partially observable 3D case from Deepmind Lab:
Mazes, Navigation and Laser-Tag

A: Mazes. 1. Mean scores. 2. Sensitivity. o B: Mazes. 1. Mean scores* 2. Sensitivity*.
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C: Navigation. 1. Mean scores 2. Sensitivity. D: Laser-tag. 1. Mean scores.
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Figure 4: Panels A1, C1, DI show task specific policy performance (averaged across all the tasks)
for the maze, navigation and laser-tag tasks, respectively. The x-axes are total numbers of training
environment steps per task. Panel B1 shows the mean scores obtained with the distilled policies (A3C
has no distilled policy, so it is represented by the performance of an untrained network.). For each
algorithm, results for the best set of hyperparameters (based on the area under curve) are reported.
The bold line is the average over 4 runs, and the colored area the average slandard deviation over the
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