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Motivation

Deep Reinforcement Learning is successful: DQN play ATARI games
at above human performance.

However:

Very costly to train: Need a lot of time and data
The training process is unstable. Many tricks introduce to make the
process stable.

People often think in the multitask learning, a task will require less
data and achieve a higher asymptotic performance (i.e., other tasks
helps). However, it’s often not true in the real case.

It is likely that gradients from other tasks behave as noise, interfering
with learning, or, in another extreme, one of the tasks might
dominate the others.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, Razvan Pascanu (Google DeepMind, London, UK)Distral: Robust Multitask Reinforcement Learning Arxiv / Presenter: Ji Gao 3 / 15



Motivation

Motivation: Find an efficient and stable way for multitask RL

Baseline: Multitask A3C algorithm
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Overview of Distral: DIStill and TRAnsfer Learning

Learn a global policy π0
Use a KL divergence regularizer to produce task-specific policies

Knowledge learned on one task are distilled into the shared policy,
and transferred to other tasks.
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Background: Multitask RL

Notations of Multitask RL

A multitask RL setting:

n tasks

an infinite horizon with discount factor γ

a ∈ A are actions, s ∈ S are states.

Transition function pi (s
′|s, a) and reward Ri (a, s) is different for each

task i .

πi : task specific stochastic policies

We want to optimize the expectation of reward, that is∑
i

Eπi [
∑
t≥0

γtRi (at , st)]
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Distral

Learn a global policy π0

KL regularization: Ensure every task policy share information with the
shared policy: Eπi [

∑
t≥0 γ

t log πi (at |st)
π0(at |st) ]

Additional entropy regularization to encourage exploration:
Eπi [γt log πi (at |st)]

Total loss function:

J(π0, {πi}ni=0)

=
∑
i

Eπi [
∑
t≥0

γtRi (at , st)− cKLγ
t log

πi (at |st)
π0(at |st)

− cEntγ
t log πi (at |st)]

=
∑
i

Eπi [
∑
t≥0

γt(Ri (at , st) +
α

β
log π0(at |st)−

1

β
log πi (at |st))]

α = cKL
cKL+cEnt

, β = 1
cKL+cEnt
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Distral

J(π0, {πi}ni=0) =
∑
i

Eπi [
∑
t≥0

γt(Ri (at , st)+
α

β
log π0(at |st)−

1

β
log πi (at |st))

Let R ′i (a, s) = Ri (at , st) + α
β log π0(at |st), the previous objective

function becomes a regularized optimization on a new reward.

Entropy regularization with a new constant.
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Soft Q-Learning

Bellman equation

Vi (st) = max
at

(Qi (at , st))

Qi (at , st) = Ri (at , st) + γ
∑
st

pi (st+1|st , at)Vi (st+1)

Soft Q-Learning[Derivation included in Equivalence Between Policy
Gradients and Soft Q-Learning ]:

Vi (st) =
1

β
log(

∑
at

π0(at |st)α exp[βQi (at , st)])

Qi (at , st) = Ri (at , st) + γ
∑
st

pi (st+1|st , at)Vi (st+1)

The idea is to use a Softmax function at the inverse temperature β to
approximate the Bellman equation. When β →∞, Softmax turns
into Max.
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Soft Q-Learning in DisTral

The optimal policy [from Equivalence Between Policy Gradients and
Soft Q-Learning ]

πi (at , st) = arg max
πi

[Eπ[Qi (st , at)]− α

β
log

πi (at |st)
π0(at |st)

]

= πα0 (at |st)eβQi (st ,at)−βVi (st)

= πα0 (at |st)eβAi (st ,at)

Ai here is an advantage function.

Unlike previous literature, π0 is learned.

π0 is updated using the loss α
β

∑
i E[αβ log π0(at |st)]
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Parameterization

It is possible to simply assign each πi a neural network and π0 a
neural network, and update them using policy gradient.

However, maximize πi and π0 alternatively could be slow.

Need a better way for a joint optimization

Method: 1. Parameterize π0 by

π̂0 =
exp(hθ0(at |st))∑
a′ exp(hθ0(a′t |st))

2. Parameterize Ai = Qi − Vi by

Âi (at |st) = fθi (at |st)−
1

β
log

∑
a

π̂α0 (a|st) exp(βfθi (a|st))

In the case, the policy for task i becomes

π̂i (at |st) =
exp(αhθ0(at |st) + βfθi (at |st))∑
a′ exp(αhθ0(a′t |st) + βfθi (a

′
t |st))
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Algorithms
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Experiment: Algorithms

Comparing 7 algorithms

Entropy regularization vs No entropy regularization

1col(Alternative optimization) vs 2col(joint optimization)
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Small example: Two room grid world

Distral converge faster than single task case

Distral successfully learn a distilled policy in the corridor that
conditioned on the previous move
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Complex case

Three complex partially observable 3D case from Deepmind Lab:
Mazes, Navigation and Laser-Tag
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