Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer from multiple sources in the same domain

Janarthanan Rajendran, Aravind S. Lakshminarayanan, Mitesh M. Khapra, P Prasanna, Balaraman Ravindran

University of Michigan, Indian Institute of Technology Madras, McGill University

ICLR 2017
Presenter: Jack Lanchantin
Outline

1. Knowledge Transfer and A2T
2. Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer
3. Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer
4. Conclusions
Knowledge Transfer
Knowledge Transfer

- N source tasks with $K_1, K_2, ..., K_N$ being the solutions of the source tasks (e.g. tennis coaches)
- K_B is the base solution for the target task which starts learning from scratch (tennis student’s initial knowledge)
- K_T is the solution we want to learn for target task T (tennis student’s final skills)
Knowledge Transfer

- N source tasks with $K_1, K_2, ..., K_N$ being the solutions of the source tasks (e.g. tennis coaches)
- K_B is the base solution for the target task which starts learning from scratch (tennis student’s initial knowledge)
- K_T is the solution we want to learn for target task T (tennis student’s final skills)

This paper: Using combination of the solutions to obtain K_T

\[
K_T(s) = w_{N+1,s}K_B(s) + \sum_{i=1}^{N} w_{i,s}K_i(s) \quad (1)
\]

$w_{i,s}$ is the weight of solution i at state s (learned by a separate network)
Attention Network for Selective Transfer (A2T)

\[K_T(s) = w_{N+1,s}K_B(s) + \sum_{i=1}^{N} w_{i,s}K_i(s) \] (1)
Outline

1. Knowledge Transfer and A2T

2. Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer

3. Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer

4. Conclusions
Background: Reinforcement Learning

- **S**: finite set of states

\[
S: \text{ finite set of states}
\]
Background: Reinforcement Learning

- \(S \): finite set of states
- \(A \): finite set of actions

\[P \]: state transition probability matrix,
\[P_{a,s'} = P[S_{t+1} = s' | S_t = s, A_t = a] \]

\[r(s, a) \]: reward function

\[R_t \]: return, sum of rewards over the agent's trajectory:
\[R_t = r_t + r_{t+1} + r_{t+2} + ... + r_T = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \]

\[\pi \]: policy function, distribution over actions given states:
\[\pi(a, s) = P[A_t = a | S_t = s] \]

\[V(s) \]: state value function, the expected return of a policy \(\pi \), for every state:
\[V_\pi(s) = E_\pi[R_t | S_t = s] \]
Background: Reinforcement Learning

- S: finite set of states
- A: finite set of actions
- P: state transition probability matrix,

 \[P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a] \]
Background: Reinforcement Learning

- S: finite set of states
- A: finite set of actions
- P: state transition probability matrix,

 \[P^a_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a] \]
- $r(s, a)$: reward function
Background: Reinforcement Learning

- **S**: finite set of states
- **A**: finite set of actions
- **P**: state transition probability matrix,
 \[P^a_{ss'} = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a] \]
- **r(s, a)**: reward function
- **R_t**: return, sum of rewards over the agent's trajectory:
 \[R_t = r_t + r_{t+1} + r_{t+2} + \ldots + r_T = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \]
Background: Reinforcement Learning

- S: finite set of states
- A: finite set of actions
- P: state transition probability matrix,
 \[P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a] \]
- $r(s, a)$: reward function
- R_t: return, sum of rewards over the agent's trajectory:
 \[R_t = r_t + r_{t+1} + r_{t+2} + \ldots + r_T = \sum_{k=0:}\infty \gamma^k r_{t+k} \]
- π: policy function, distribution over actions given states:
 \[\pi(a, s) = \mathbb{P}[A_t = a | S_t = s] \]
Background: Reinforcement Learning

- **S**: finite set of states
- **A**: finite set of actions
- **P**: state transition probability matrix,
 \[P^a_{ss'} = P[S_{t+1} = s' | S_t = s, A_t = a] \]
- **r(s, a)**: reward function
- **R_t**: return, sum of rewards over the agent's trajectory:
 \[R_t = r_t + r_{t+1} + r_{t+2} + \ldots + r_T = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \]
- **π**: policy function, distribution over actions given states:
 \[\pi(a, s) = P[A_t = a | S_t = s] \]
- **V(s)**: state value function, the expected return of a policy \(\pi \), for every state:
 \[V_\pi(s) = \mathbb{E}_\pi[R_t | S_t = s] \]
Outline

1 Knowledge Transfer and A2T

2 Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer

3 Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer

4 Conclusions
Policy Transfer

- Transferring source task policies
- We have $K_1, ..., K_N, K_B, K_T \leftarrow \pi_i, ..., \pi_N, \pi_B, \pi_T$
- The agent acts in the target task by sampling actions from the target distribution π_T, obtained from:

$$K_T(s) = w_{N+1,s}K_B(s) + \sum_{i=1}^{N} w_{i,s}K_i(s)$$ \hspace{1cm} (1)
Policy Transfer using REINFORCE

REINFORCE

Direct policy search by making weight adjustments along the gradient of expected reinforcement.

\[\theta_a \leftarrow \theta_a + \alpha \theta_a (r - b) \frac{\partial \sum_{t=1}^{M} \log(\pi_T(s_t, a_t))}{\partial \theta_a} \] \hspace{1cm} (2)

\[\theta_b \leftarrow \theta_b + \alpha \theta_b (r - b) \frac{\partial \sum_{t=1}^{M} \log(\pi_B(s_t, a_t))}{\partial \theta_b} \] \hspace{1cm} (3)

where \(\alpha \) is learning rate, \(r \) is return obtained in the episode, \(b \) is a reinforcement baseline, \(M \) is the length of the episode.
Policy Transfer in Actor-Critic

Actor-Critic

Temporal Difference (TD) method where the actor proposes a policy and the critic estimates the value function to critique the actors policy. The updates to the actor happens through TD-error.
Outline

1. Knowledge Transfer and A2T

2. Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer

3. Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer

4. Conclusions
Transferring source task’s action-value functions (Q functions):

\[Q_\pi(s, a) = \mathbb{E}_\pi[R_t | S_t = s, A_t = a] \] \hspace{1cm} (4)

- The Q function is used to guide the agent to selecting the optimal action \(a \) at a state \(s \).
One way to learn optimal policies for an agent is to estimate the optimal $Q(s, a)$ for the task. Q-learning is an off-policy learning algorithm that estimates the Q function (e.g. using a deep neural net).
Outline

1. Knowledge Transfer and A2T

2. Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer

3. Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer

4. Conclusions
Selective Transfer with Policy Function

- Task LT is to start in A or B with uniform probability and end up in C in the least number of steps.
- Two source tasks, L_1 and L_2 are available. L_1 has learned to reach A from B and L_2 has learned to reach B from A.
- Model learns to solve LT using REINFORCE.
(a) The weights given by the attention network. Selective transfer in REINFORCE
Task LT is to start in S1 or S2 and end up in G1 in the least number of steps.

$L1$ has learned to reach G1 from S1 and $L2$ has learned to reach G1 from S2.

Model learns to solve LT using Actor-Critic.
Selective Transfer with Policy Function

(b) Selective transfer in Actor-Critic
Selective Transfer with Value Function

Figure 4: Visualisation of the attention weights in the Selective Transfer with Attention Network

- L1 performs poorly on upper right quadrant
- L2 performs poorly on lower right quadrant
Selective Transfer with Value Function

Figure 4: Visualisation of the attention weights in the Selective Transfer with Attention Network

- L1 performs poorly on upper right quadrant
- L2 performs poorly on lower right quadrant
- L1 score of 9.2, L2 score of 8, LT score of 17.2 ([-21,21])
Selective Transfer with Value Function

Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer from multiple sources in the same domain

ICLR 2017 Presenter: Jack Lanchantin
Outline

1. Knowledge Transfer and A2T

2. Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer

3. Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer

4. Conclusions
Avoiding Negative Transfer and Ability to Transfer from Favorable Task (policy transfer in puddle world)

- Reach goal state by starting in S1, S2, S3, S4
- L1 is favorable (good) model
- L2 is unfavorable (inverse output weights of L1)
Avoiding Negative Transfer and Ability to Transfer from Favorable Task (policy transfer in puddle world)

![Graph showing the performance of different transfer methods over episodes.](image)

- **Learning from scratch**
- **Direct transfer with unfavorable task**
- **A2T with base network and unfavorable task**
- **A2T with base network, favorable and unfavorable tasks**

Janarthanan Rajendran, Aravind S. Lakshmin, Attend, Adapt and Transfer: Attentive Deep, ICLR 2017
Avoiding Negative Transfer and Ability to Transfer from Favorable Task (value transfer in pong)

(a) Avoiding negative transfer (Pong) and transferring from a favorable task
(b) Avoiding negative transfer (Freeway) and transferring from a favorable task
Attention Map for Favorable/Unfavorable Sources (value transfer in pong)
Outline

1. Knowledge Transfer and A2T

2. Knowledge Transfer with A2T
 - Reinforcement Learning
 - Policy Transfer
 - Value Transfer

3. Experiments and Results
 - Selective Transfer
 - Avoiding Transfer
 - Choosing When to Transfer

4. Conclusions
When a Perfect Expert is Not Available Among Tasks

- Pong with partially favorable and unfavorable source tasks

![Graph showing performance over epochs for different methods in Pong](image)
Conclusions

- General deep neural network architecture, A2T, for transfer learning
- A2T avoids negative transfer while enabling selective transfer from multiple source tasks in the same domain