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Motivation

I Direct measurement of genome-wide transcription factor (TF)
occupancy for all expressed factors in a cell type of interest is
currently infeasible outside of large consortium projects

I Therefore, computational prediction of TF binding to sites at
regions of accessible chromatin or active histone marks is
critically important
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Drawbacks of Previous Methods

I Large-scale in vitro TF binding experiments provide large
amounts of data for training binding models

I However, each experiment is typically summarized as a PWM,
which yields near-identical PWMs for closely related TFs

I Previous supervised methods can discriminate accurately
between bound and unbound sequences of individual TFs but
do not develop a multiclass prediction model that can
distinguish between TFs with similar binding signals
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BindSpace

I A multiclass method for joint learning of binding models for
hundreds of TFs assayed by HT-SELEX by embedding their
bound and unbound DNA sequences and TF labels into a
common high-dimensional space

I Adaptation of StarSpace which learns to embed words into a
semantic space, in which words with similar meanings embed
close to each other

I For multiclass problems, class labels are embedded in the
same space
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BindSpace

I In BindSpace, k-mers are analogous to words, and TFs and
TF families serve as class labels

I BindSpace learns k-mer and label embeddings so that probes
embed close to the labels of TFs that bind them and away
from other labels

I For in vitro or in vivo TF binding prediction, a test DNA
sequence is embedded in BindSpace and assigned the closest
TF label
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Overview
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Training Data

I 270 experiments for 243 transcription factors

I Positive examples: top 2,000 enriched probes from each
experiment (yielding 500,000 positive training sequences)

I Negative examples: randomly sampled universal negatives
from HT-SELEX probe libraries and non-accessible genomic
regions to obtain 500,000 negative training sequences
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Evaluation Data

1. Held out HT-SELEX data

2. Independent PBM data sets to test TFs within the same
family across in vitro platforms

3. In vivo sites from ENCODE ChIP-Seq
I Two scenarios for negatives: dinucleotide shuffle from positive

samples, and nonbinding regions of accessible chromatin
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Sequence and Label Representation

I Each sequence is represented as a bag of 8-mers

I Each bag is associated with both a TF label (e.g., HOXA2)
and a TF family label (e.g., Homeodomain) or with a
universal negative label
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Sequence Representation Details

I Each HT-SELEX probe input sequence si is represented by a
bag of 8-mers with up to 2 consecutive wildcards (where the
wildcard symbol N matches any nucleotide)

I A particular 8-mer is considered a token of si if it occurs in
either si or reverse complement of si .
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Sequence and Label Representation Summary

I Objective is to learn an embedding for a total of 113,074
entities
I 112,800 k-mers (all 8-mers with max 2 wildcard)
I 243 TF labels
I 30 TF families
I 1 universal negative label

I All entities are represented in a vector space of dimension d
(d=300 in experiments)
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BindSpace Framework

I Training examples for BindSpace are structured as left hand
side (LHS) right hand side (RHS) pairs

I In BindSpace, the LHS of the ith input is a DNA probe
represented by its constituent k-mers (wi ,1, . . . ,wi ,mi

) and the
RHS consists of the labels associated with this probe
(li ,1, . . . , li ,ni )
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Embedding Sequences and Labels

I The embedding of the LHS of the ith example is induced by
the embedding of all constituent k-mers as follows:

lhsi =
1

mp
i

mi∑
j=1

wi ,j (1)

I Similarly, the embedding of the RHS of the example is
induced by the embedding of all its associated labels:

rhsPi =
1

npi

ni∑
j=1

li ,j (2)
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Negative Samples

I To compute the loss associated with this example, we
randomly sample K examples with labels different from
example i and compute the RHS associated with each:

rhsNi ,k =
1

npk

nk∑
j=1

lk,j (3)
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Hinge Loss

I The loss function for a given positive example with one
random negative is:

Errik = max (0,margin− lhsi · rhsPi + lhsi · rhsNi ,k) (4)

I The total loss associated with example i using K negative
samples is:

Erri =
1

K

K∑
k=1

max (0,margin− lhsi · rhsPi + lhsi · rhsNi ,k)

(5)
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T-SNE
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HT-Selex Held Out Results
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Multi-Class Confusion Matrix for TFs in bZIP family
Motifs of TFs in the bZIP family are similar
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Evaluation Data from ENCODE

I TF binding versus nonbinding at chromatin accessible regions
in a given cell type

I Processed publicly available ATAC-seq data and used
ENCODE ChIP-seq data for 17 TFs in K562 and 11 TFs in
GM12878 that had sufficient overlap with ATAC-seq peaks
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Evaluation Data from ENCODE

I BindSpace significantly outperformed all competing methods
on K562 by F1 score, and significantly outperformed LASSO
on GM12878, but was not significantly bettern than PWM
and DeepBind

I There was no significant difference between methods in terms
of auPR
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Distinguishing between paralogous (from the same family)
TF binding sites in vivo - from ENCODE Data
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Conclusion

I Train on HT-Selex, test on ENCODE

I Outperforms PWM and LASSO on multi-class outputs
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