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Motivation

» Direct measurement of genome-wide transcription factor (TF)
occupancy for all expressed factors in a cell type of interest is
currently infeasible outside of large consortium projects

» Therefore, computational prediction of TF binding to sites at
regions of accessible chromatin or active histone marks is
critically important
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Drawbacks of Previous Methods

P Large-scale in vitro TF binding experiments provide large
amounts of data for training binding models

> However, each experiment is typically summarized as a PWM,
which yields near-identical PWMs for closely related TFs

» Previous supervised methods can discriminate accurately
between bound and unbound sequences of individual TFs but
do not develop a multiclass prediction model that can
distinguish between TFs with similar binding signals
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BindSpace

» A multiclass method for joint learning of binding models for
hundreds of TFs assayed by HT-SELEX by embedding their
bound and unbound DNA sequences and TF labels into a
common high-dimensional space

» Adaptation of StarSpace which learns to embed words into a
semantic space, in which words with similar meanings embed
close to each other

» For multiclass problems, class labels are embedded in the
same space
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BindSpace

» In BindSpace, k-mers are analogous to words, and TFs and
TF families serve as class labels

» BindSpace learns k-mer and label embeddings so that probes
embed close to the labels of TFs that bind them and away
from other labels

» For in vitro or in vivo TF binding prediction, a test DNA
sequence is embedded in BindSpace and assigned the closest
TF label

5/22



Overview
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Training Data

> 270 experiments for 243 transcription factors

» Positive examples: top 2,000 enriched probes from each
experiment (yielding 500,000 positive training sequences)

> Negative examples: randomly sampled universal negatives
from HT-SELEX probe libraries and non-accessible genomic
regions to obtain 500,000 negative training sequences
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Evaluation Data

1. Held out HT-SELEX data

2. Independent PBM data sets to test TFs within the same
family across in vitro platforms
3. In vivo sites from ENCODE ChIP-Seq

» Two scenarios for negatives: dinucleotide shuffle from positive
samples, and nonbinding regions of accessible chromatin
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Sequence and Label Representation

> Each sequence is represented as a bag of 8-mers

» Each bag is associated with both a TF label (e.g., HOXA2)
and a TF family label (e.g., Homeodomain) or with a
universal negative label
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Sequence Representation Details

» Each HT-SELEX probe input sequence s; is represented by a
bag of 8-mers with up to 2 consecutive wildcards (where the

wildcard symbol N matches any nucleotide)
» A particular 8-mer is considered a token of s; if it occurs in
either s; or reverse complement of s;.
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Sequence and Label Representation Summary

» Objective is to learn an embedding for a total of 113,074
entities

> 112,800 k-mers (all 8-mers with max 2 wildcard)
> 243 TF labels
» 30 TF families
» 1 universal negative label
> All entities are represented in a vector space of dimension d
(d=300 in experiments)
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BindSpace Framework

» Training examples for BindSpace are structured as left hand
side (LHS) right hand side (RHS) pairs

» In BindSpace, the LHS of the ith input is a DNA probe

represented by its constituent k-mers (w; 1,..., w;m,) and the
RHS consists of the labels associated with this probe
(/I',].: MR} /i,n;)
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Embedding Sequences and Labels

» The embedding of the LHS of the ith example is induced by
the embedding of all constituent k-mers as follows:
|hS,': jZW,',j (1)
J

1
m;

» Similarly, the embedding of the RHS of the example is
induced by the embedding of all its associated labels:
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Negative Samples

> To compute the loss associated with this example, we
randomly sample K examples with labels different from
example i and compute the RHS associated with each:

Nk

1
rhs N,"k = 5 Z /k,j (3)
nk =1
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Hinge Loss

» The loss function for a given positive example with one
random negative is:

Errjx = max (0, margin — lhs; - rhs P; + lhs; -rhs N; ) (4)

P> The total loss associated with example i using K negative
samples is:

K
1
Err; = e Z max (0, margin — lhs; - rhs P; + lhs; - rhs N; )

k=1
(5)
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T-SNE

Multiclass embedding learns TF specificity
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HT-Selex Held Out Results
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Multi-Class Confusion Matrix for TFs in bZIP family

Motifs of TFs in the bZIP family are similar
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Evaluation Data from ENCODE

» TF binding versus nonbinding at chromatin accessible regions
in a given cell type

» Processed publicly available ATAC-seq data and used
ENCODE ChlP-seq data for 17 TFs in K562 and 11 TFs in
GM12878 that had sufficient overlap with ATAC-seq peaks
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Evaluation Data from ENCODE

» BindSpace significantly outperformed all competing methods
on K562 by F1 score, and significantly outperformed LASSO
on GM12878, but was not significantly bettern than PWM
and DeepBind

» There was no significant difference between methods in terms
of auPR
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Distinguishing between paralogous (from the same family)
TF binding sites in vivo - from ENCODE Data
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Conclusion

» Train on HT-Selex, test on ENCODE
» Outperforms PWM and LASSO on multi-class outputs
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