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Attention

by ent270 ,ent223 updated 9:35 amet ,monmarch2,2015
(eno familial for fall at its fashion show in
ent231on sunday ,dedicating its collectionto "~ mamma™”
with nary a pair of " momjeans "insight .ent164 andent21,
who are behindthe ent196 brand ,sent models down the
runway indecidedly feminine dresses and skirts adorned
with roses ,lace and even embroidered doodles by the
designers ' own nieces and nephews .many of the looks

featured saccharine needlework phrases like " ilove you,

X dedicated their fall fashion show to moms
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Self Attention

apim apim
00} 00}
sem sem

H

asneoaq asneoaq
JEENS

ay} ay)

SS0.I0 SS0I0

Luplp Lupip

lewiue lewiue

syl ayL

paun pai

00} 00}

sem sem

i

a@snedaq @snedaq
19alls 198l]ls
ay) ay
SS0JI0
Lupip
lewiue
ayL ayL

5/44



Self Attention
(7]

e — P (X' x)
i 2/1exp (XIT ) ®
I+1 Z Qi Xj (2)
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Self Attention
(7]

x*1 = Attn(X!, X!, X)) (3)
Attn(Q, K, V) = softmax (QKT) \% (4)
T Vi

X% = lookupTable(x) + positionEncoding(x)
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Self Attention
(7]
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Multi-Head Attention
(7]
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Multi-Head Attention
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Restricted Neighbor Attention
[7]
» Only allow attention to k neighbors

Original Restricted

O(Nk)
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Local Attention
[5]
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where k is the block size and B = % is the number of blocks
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Block Self Attention
(6]

Context fusion

Inter-block
self-attention

Share |
parameters |

Intra-block Masked self-attention Masked self-attention)
self-attention | | g" (M) 9" (M)

IT’"Hl' .

Split into blocks
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Masked self-attention Share '1
. m parameters;
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Local Attention

Original Block/Local
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Memory Compressed Attention
(5]

I

Masked Multi-Head
Attention
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Reduce the number of keys and values by using a strided
convolution. The number of queries remains unchanged.
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Memory Compressed
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All Masks
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Area Attention
(4]

» Put groups of original memory keys (e.g. from individual
tokens) into “areas”
» Keys: mean of each area:
» Values: sum of each area

Sequence

area memory
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All Masks

Original Restricted Block/Local Memory Compressed
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Generating Long Sequences with Sparse Transformers
(1]
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Generating Long Sequences with Sparse Transformers
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Generating Long Sequences with Sparse Transformers
(1]

> Choosing p attention heads, set the attention width to ¢/N
» Reach full connectivity after p attention update steps
> Reduces effective computation to O(N+/N)
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Generating Long Sequences with Sparse Transformers
(1]
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Generating Long Sequences with Sparse Transformers
(1]

> S; denotes the set of indices of the input vectors to which the
embedding i attends

» Factorized self-attention instead has p separate attention
heads, where the mth head defines a subset of the indices
A {j:j < i} and lets S; = A where |AY)| o ¢/n

» For every j < i pair, we set every A such that / can attend to
J through a path of locations with maximum length p + 1.
Specifically, if (j, a, b, c, ..., i) is the path of indices, then
J € Agl), ae Af), be A(C3) and so forth
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Attention Types

b - -

Encoder-Decoder Attention

MaskedDecoder Self-Attention

Encoder Self-Attention
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Music Transformer
3]

T rel
QK'+S )V (5)

VDp

Relative Attention = Softmax (

» S an L x L dimensional logits matrix which modulates the
attention probabilities for each head.

» S = QRT, where R is a tensor of shape (L, L, Dj)
containing the embeddings that correspond to the relative
distances between all keys and queries.

26/44



Outline

Visualizing BERT
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BERT
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Context Embeddings

» Hewitt and Manning (2017) The authors find that after a
single self attention step (before the nonlinearity) the square
of the distance between context embeddings is roughly
proportional to tree distance in the dependency parse.

P> This paper seeks to answer why
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Visualizing and Measuring the Geometry of BERT
(2]

» Goal: explore BERT's internal representations

» Investigate attention matrices
P Investigate context embeddings in relation to parse trees
» Find semantic representations of BERT embeddings
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Semantics of Attention Matrices

> Attention matrices are built on relations between pairs of
words. Do they represent grammar structure between these
pairs?

» Formulation: can an attention vector for a pair of words
classify a dependency relation?
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Semantics of Attention Matrices

» Train linear model on the model-wide attention vector for

pairs of words

= [l e v v e e
o o RN N N R R B
Asingle attention head 12 layers 12 layers X 12 heads = 144 dimensional attention vector

» 85.8% accuracy on dependency relation prediction from Penn

Treebank
> i.e. syntactic information is encoded in attention vectors
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Context Embeddings

> After a single self attention step, the square of the distance
between context embeddings is roughly proportional to tree
distance in the dependency parse tree

» Suggests that BERT embeddings are a good alternative to
parse tree embeddings
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Context Embedding Relationships

“The sale of Southern Optical is a part of the program.” “Factories booked $236.74 billion in orders in September, nearly the
same as the $236.79 billion in August, the Commerce Department said.”
a Commerce
part s said
is the Department
part booked ' » .
2 The 3 Departnent ,
is Facgories . . Usaid
sale omnerce
program sale L SMCthe Factories August
. in
The of billion September Septenver
orders nearly booked as
of the 236.74 in . 50— o the
Optical in orders nearly
Optical as billion n 5 billion
the
Southern program the August 236.79
of Southern 236.79 billion
in 236.74
Ratio between d” and tree distance
Ground truth dependency
0.25 5 1 4 No ground truth dependency, o < 1.5
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Distance Between Words of All Relations

» Is the actual difference between embedding distance and the
tree distance merely noise, or a more interesting pattern?

» By looking at the average embedding distances of each
dependency relation, we can see they vary
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Average Distance Between Words of all Relations

Mean distance squared for dependency relations
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» Suggests that BERT's syntactic representation has an
additional quantitative aspect beyond traditional dependency
grammar
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Contextual Semantics

» Does BERT actually encode contextual meaning into its
representation

» e.g. does “bark” refer to a tree or a dog
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Contextual Semantics Visualization Tool

» Input: word

» Retrieves: 1000 sentences from wikipedia containing that
word

» Qutputs: clusters separating the embeddings of the input
word for each sentence
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Contextual Semantics Visualization Tool

German article “die”

- ®
Was der Fall ist, die Tatsache, iiber die Verhandlungen
ist das Bestehen von Sachverhalten. der Kénigl.

single person dies

iy

multiple people die a playing die

; QI ccem gl
Chernenko became the first Soviet Over 60 people die and over Players must always move a
leader to die in less than three years 100 are unaccounted for. ‘ token according to the die value
Vaughan's ultimate fantasy was to die in a Many more die from radiation The faces of a die may be placed
head-on collision with movie star Elizabeth Taylor sickness, starvation and cold. clockwise or counterclockwise

Do
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Quantitative Semantic Evaluation

» For a given word with n senses, create a nearest-neighbor
classifier where each neighbor is the centroid of a given word
sense’'s BERT-base embeddings in the training data.

» To classify a new word we find the closest of these centroids

» State of the art F1 score of 71.1
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Concatenated Similarity Ratio

> If word sense is affected by context, then we should be able to
influence context embedding positions by systematically
varying their context

» |dea: concatenate sentences of the same word with different
semantic meanings

A: "He thereupon went to London and spent the winter talking to men of wealth."”
went: to move from one place to another.

B: "He went prone on his stomach, the better to pursue his examination." went: to
enter into a specified state.
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Concatenated Similarity Ratio

= individual
140 1 concatenated

Distance ratio

0 2 4 ‘ - 10
Layers

Figure 5: Average ratio of similarity to sense A vs.
similarity to sense B.

42/ 44



References |

[1]

2]

[3]

[4]

Rewon Child, Scott Gray, Alec Radford, and llya Sutskever.
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce,
Fernanda Viégas, and Martin Wattenberg. Visualizing and
measuring the geometry of bert. arXiv preprint
arXiv:1906.02715, 2019.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit,
Noam Shazeer, Curtis Hawthorne, Andrew M Dai, Matthew D
Hoffman, and Douglas Eck. An improved relative self-attention
mechanism for transformer with application to music
generation. arXiv preprint arXiv:1809.04281, 2018.

Yang Li, Lukasz Kaiser, Samy Bengio, and Si Si. Area
attention, 2019.

43 /44



References |l

[5]

[6]

[7]

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich,
Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. Generating
wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and
Chengqi Zhang. Bi-directional block self-attention for fast and
memory-efficient sequence modeling. arXiv preprint
arXiv:1804.00857, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, tukasz Kaiser, and lllia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017.

44 /44



	Transformers for Long Range Dependencies
	Visualizing BERT
	References

