
Graph Markov Neural Networks

Presenter: Jack Lanchantin

University of Virginia
https://qdata.github.io/deep2Read/

201906

1 / 28

https://qdata.github.io/deep2Read/

Semi-supervised object classification

I Given graph G = (V ,E , xV), where V is a set of objects, E is
a set of edges between objects, and xV stands for the
attributes of all the objects

I Given the labels yL of a few labeled objects L ⊂ V , the goal is
to predict the labels yU for the remaining unlabeled objects
U = V \ L.

I This problem has been extensively studied in the literature of
both statistical relation learning (SRL) and graph neural
networks (GNN). Essentially, both types of methods aim to
model the distribution of object labels conditioned on the
object attributes and the graph structure, i.e. p(yV |xV ,E)

2 / 28

Statistical Relational Learning

I Most SRL methods model p(yV |xV) with conditional random
fields, which employ the following formulation:

p(yV |xV) =
1

Z (xV)

∏
(i ,j)∈E

ψi ,j(yi , yj , xV). (1)

where (i , j) is an edge in the graph G , and ψi ,j(yi , yj , xV) is
the potential score defined on the edge (parameterized NN)

I Predicting the labels for unlabeled objects becomes an
inference problem (inferring the posterior label distribution of
the unlabeled objects p(yU |yL, xV))

I Exact inference is usually infeasible

3 / 28

GNN

I GNN methods ignore the dependency of object labels and
instead learn effective object representations for label
prediction. The joint distribution of labels is fully factorized
as:

p(yV |xV) =
∏
n∈V

p(yn|xV). (2)

I GNNs infer the label distribution p(yn|xV) for each object n
independently. For each object n, GNNs predict the label in
the following way:

h = g(xV ,E) p(yn|xV) = yn|softmax(W hn),

where h ∈ R|V |×d is the representations of all the objects,
W ∈ RK×d is a linear transformation, with d as the
dimension and K as the number of label classes

4 / 28

Graph Markov Neural Network (GMNN)

I The goal of GMNN is to combine the advantages of both SRL
methods and GNNs, such that we can learn useful objective
representations for predicting object labels, as well as model
the dependency between object labels.

I GMNNs model the joint distribution of object labels
conditioned on object attributes, p(yV |xV), by using a CRF,
which is optimized with a pseudolikelihood variational EM
framework

5 / 28

Outline

Pseudolikelihood Variational EM

Inference (E-step)

Learning (M-step)

Optimization

6 / 28

GMNN Model

I Following SRL methods, we use a CRF field as in Eq. (1) to
model the joint distribution of object labels conditioned on
object attributes, i.e. pφ(yV |xV), where the potential is
defined over each edge, and φ is the model parameters

I We learn the model parameters φ by maximizing the
log-likelihood function of the observed object labels:

log pφ(yL|xV)

7 / 28

Minimizing the GMNN Log-Likelihood Function

I Directly maximizing the log-likelihood function is difficult,
since many object labels are unobserved

I Instead optimize the evidence lower bound (ELBO) of the
log-likelihood function:

log pφ(yL|xV) ≥
Eqθ(yU |xV)[log pφ(yL, yU |xV)− log qθ(yU |xV)],

(3)

where qθ(yU |xV) can be any distributions over yU , and the
equation holds when qθ(yU |xV) = pφ(yU |yL, xV)

I According to the variational EM algorithm, such a lower
bound can be optimized by alternating between a variational
E-step and an M-step.

8 / 28

Pseudolikelihood Variational EM

Eqθ(yU |xV)[log pφ(yL, yU |xV)− log qθ(yU |xV)]

I In the variational E-step (a.k.a., inference procedure), the goal
is to fix pφ and update the variational distribution qθ(yU |xV)
to approximate the true posterior distribution pφ(yU |yL, xV).

I In the M-step (a.k.a., learning procedure), we fix qθ and
update pφ to maximize the likelihood function `:

`(φ) = Eqθ(yU |xV)[log pφ(yL, yU |xV)]. (4)

9 / 28

Pseudolikelihood Variational EM

I However, directly optimizing the likelihood function can be
difficult, as we have to deal with the partition function in pφ.
To avoid computing the partition function, we instead
optimize the pseudolikelihood function below:

`PL(φ) , Eqθ(yU |xV)[
∑
n∈V

log pφ(yn|yV \n, xV)]

= Eqθ(yU |xV)[
∑
n∈V

log pφ(yn|yNB(n), xV)],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of pφ(yV |xV)

10 / 28

Outline

Pseudolikelihood Variational EM

Inference (E-step)

Learning (M-step)

Optimization

11 / 28

Inference (E-step)

I The inference step aims to compute the posterior distribution
pφ(yU |yL, xV). Due to the complicated relational structures
between object labels, exact inference is intractable.

I Therefore, we approximate it with another variational
distribution qθ(yU |xV) using the mean-field method:

qθ(yU |xV) =
∏
n∈U

qθ(yn|xV). (6)

where n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

12 / 28

Inference (E-step)

I To model the distribution of each object label in qθ, we
parameterize qθ(yn|xV) with a graph neural network (GNN),
which learns object representations for label prediction:

qθ(yn|xV) = P(yn|softmax(Wθhθ,n)). (7)

13 / 28

Inference (E-step)

I With the mean-field formulation, the optimal distribution
qθ(yn|xV) satisfies the following condition:

log qθ(yn|xV) =

Eqθ(yNB(n)∩U |xV)[log pφ(yn|yNB(n), xV)] + const.
(8)

where the right side of the condition involves expectation with
respect to qθ.

I To further simplify the condition, we estimate the expectation
by using a sample drawn from qθ(yNB(n)∩U |xV), resulting in:

Eqθ(yNB(n)∩U |xV)[log pφ(yn|yNB(n), xV)]

' log pφ(yn|ŷNB(n), xV).
(9)

14 / 28

Inference (E-step)

I In the above formula, ŷNB(n) = {ŷk}k∈NB(n) is defined as
follows: for each unlabeled neighbor k of object n, we sample
ŷk ∼ qθ(yk |xV), and for each labeled neighbor k of object n,
ŷk is set as the ground-truth label.

I In practice, we find that using one sample from
qθ(yNB(n)∩U |xV) yields comparable results with multiple
samples

I Based on Eq. (8) and (9), the optimal qθ(yn|xV) satisfies:

qθ(yn|xV) ≈ pφ(yn|ŷNB(n), xV), (10)

15 / 28

Inference (E-step)

I To learn the optimal qθ(yn|xV), we start with using the
current value of θ to compute pφ(yn|ŷNB(n), xV).

I Then the value of pφ(yn|ŷNB(n), xV) is fixed as target, and we
update θ to minimize the reverse KL divergence between
qθ(yn|xV) and the target pφ(yn|ŷNB(n), xV), yielding the
objective function below:

Oθ,U =
∑
n∈U

Epφ(yn|ŷNB(n),xV)[log qθ(yn|xV)]. (11)

16 / 28

Inference (E-step)

I qθ can be also trained by predicting the labels for the labeled
objects.

I Therefore, we also let qθ maximize the following supervised
objective function:

Oθ,L =
∑
n∈L

log qθ(yn|xV). (12)

where yn is the ground-truth label of n.

I By adding Eq. (11) and (12), we obtain the overall objective
for optimizing θ:

Oθ = Oθ,U + Oθ,L. (13)

17 / 28

Outline

Pseudolikelihood Variational EM

Inference (E-step)

Learning (M-step)

Optimization

18 / 28

E-step to M-Step

Eqθ(yU |xV)[log pφ(yL, yU |xV)− log qθ(yU |xV)],

I In the variational E-step (a.k.a., inference procedure), the goal
is to fix pφ and update the variational distribution qθ(yU |xV)
to approximate the true posterior distribution pφ(yU |yL, xV).

I In the M-step (a.k.a., learning procedure), we fix qθ and
update pφ to maximize the likelihood function below:

`(φ) = Eqθ(yU |xV)[log pφ(yL, yU |xV)].

19 / 28

Learning (M-step)

I Maximize `PL(φ):

`PL(φ) , Eqθ(yU |xV)[
∑
n∈V

log pφ(yn|yNB(n), xV)], (14)

I Only the conditional distribution pφ(yn|yNB(n), xV) is required
for pφ in both the inference and learning steps (Eq. (11) and
(5))

I Therefore, instead of defining the joint distribution of object
labels pφ(yV |xV) by specifying the potential function, we can
simply focus on modeling the conditional distribution.

20 / 28

Learning (M-step)

I Here, we parameterize the conditional distribution
pφ(yn|yNB(n), xV) with another non-linear graph neural
network model (GNN) because of its effectiveness:

pφ(yn|yNB(n), xV) = P(yn|softmax(Wφhφ,n)). (15)

where the object representation hφ,n is learned by GNNφ

21 / 28

Learning (M-step)

I When defining pφ(yn|yNB(n), xV), GNNφ only uses the object
labels yNB(n) surrounding the object n as features, but GNNφ

is flexible to incorporate other features.

I For example, we can take both the surrounding object labels
yNB(n) and surrounding attributes xNB(n) as features in GNNφ

(as discussed in Experiments)

22 / 28

Learning (M-step)

I When optimizing pφ to maximize Eq. (5), we estimate the
expectation in Eq. (5) by drawing a sample from qθ(yU |xV).

I More specifically, if n is an unlabeled object, then we sample
ŷn ∼ qθ(yn|xV), and otherwise we set ŷn as the ground-truth
label.

I φ can be optimized by maximizing the following objective
function:

Oφ =
∑
n∈V

log pφ(ŷn|ŷNB(n), xV). (16)

23 / 28

Outline

Pseudolikelihood Variational EM

Inference (E-step)

Learning (M-step)

Optimization

24 / 28

Optimization

I First pre-train the inference model qθ with the labeled objects.

I Then we alternatively optimize pφ and qθ until convergence.
I Afterwards, both pφ and qθ can be employed to infer the

labels of unlabeled objects.
I In practice, we find that qθ consistently outperforms pφ, and

thus we use qθ to infer object labels by default

25 / 28

Optimization

Object
𝑞"

Object
𝑝$

E-Step: Inference

M-Step: Learning

PredictUpdate

UpdatePredict

I qθ uses the attributes of its surrounding objects to learn its
representation, and further predicts the label

I In contrast, pφ uses the labels of the surrounding objects as
features. If a neighbor is unlabeled, use label sampled from qθ

I In the E-step, pφ predicts the label for the central object,
which is then treated as target to update qθ

I In the M-step, qθ predicts the label for the central object,
which serves as the target data to update pφ

26 / 28

Optimization

27 / 28

Results

28 / 28

	Pseudolikelihood Variational EM
	Inference (E-step)
	Learning (M-step)
	Optimization

