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Semi-supervised object classification

» Given graph G = (V, E,xy), where V is a set of objects, E is
a set of edges between objects, and xy, stands for the
attributes of all the objects

» Given the labels y; of a few labeled objects L C V/, the goal is
to predict the labels yy for the remaining unlabeled objects
U=V\L

» This problem has been extensively studied in the literature of
both statistical relation learning (SRL) and graph neural
networks (GNN). Essentially, both types of methods aim to
model the distribution of object labels conditioned on the
object attributes and the graph structure, i.e. p(yy/|xv, E)
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Statistical Relational Learning

» Most SRL methods model p(yy|xy) with conditional random
fields, which employ the following formulation:

1
Z(xv) IT wiilyiryisxv). (1)

(ij)EE

plyvixv) =

where (i, j) is an edge in the graph G, and ¥ ;(yi,yj,xv) is
the potential score defined on the edge (parameterized NN)

» Predicting the labels for unlabeled objects becomes an
inference problem (inferring the posterior label distribution of
the unlabeled objects p(yuylyr, xv))

» Exact inference is usually infeasible
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GNN

» GNN methods ignore the dependency of object labels and

instead learn effective object representations for label
prediction. The joint distribution of labels is fully factorized
as:

p(yvxv) = H p(ynlxv). (2)

neV

GNNs infer the label distribution p(y,|xy/) for each object n
independently. For each object n, GNNs predict the label in
the following way:

h=g(xv,E) p(yn|xv) = yn|softmax(Wh,),

where h € RIVI*9 is the representations of all the objects,
W € RK*9 is a linear transformation, with d as the
dimension and K as the number of label classes
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Graph Markov Neural Network (GMNN)

» The goal of GMNN is to combine the advantages of both SRL
methods and GNNs, such that we can learn useful objective
representations for predicting object labels, as well as model
the dependency between object labels.

» GMNNSs model the joint distribution of object labels
conditioned on object attributes, p(yy|xy), by using a CRF,
which is optimized with a pseudolikelihood variational EM
framework
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Outline

Pseudolikelihood Variational EM
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GMNN Model

» Following SRL methods, we use a CRF field as in Eq. (1) to
model the joint distribution of object labels conditioned on

object attributes, i.e. ps(yv|xy), where the potential is
defined over each edge, and ¢ is the model parameters

> We learn the model parameters ¢ by maximizing the
log-likelihood function of the observed object labels:

log pe(yL|xv)

7/28



Minimizing the GMNN Log-Likelihood Function

>

>

Directly maximizing the log-likelihood function is difficult,
since many object labels are unobserved

Instead optimize the evidence lower bound (ELBO) of the
log-likelihood function:

log pe(yL|xv) >

(3)
Eq, (yulxv) 108 Po(yL; yulxv) — log ga(yulxv)],

where gp(yy|xv) can be any distributions over y(, and the
equation holds when qg(yulxv) = ps(yulye.xv)

According to the variational EM algorithm, such a lower
bound can be optimized by alternating between a variational
E-step and an M-step.
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Pseudolikelihood Variational EM

Eq, (yulxv) 108 Po(yL; yulxv) — log ga(yulxv)]

» In the variational E-step (a.k.a., inference procedure), the goal
is to fix py and update the variational distribution gs(yu|xv)
to approximate the true posterior distribution py(yu|yr, xv).

» In the M-step (a.k.a., learning procedure), we fix gy and
update p, to maximize the likelihood function ¢:

(@) = Eqy(yylxy)[log Ps(yL, Yulxv)]- (4)
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Pseudolikelihood Variational EM

» However, directly optimizing the likelihood function can be
difficult, as we have to deal with the partition function in py.
To avoid computing the partition function, we instead
optimize the pseudolikelihood function below:

EPL((b) 2 ECI@(YU\XV)[Z log p¢(Yn|YV\mXV)]
neV (5)

= Egy(yulxv) [Z log ps(YnlynB(n)s Xv)]s
neV

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of py(yv|xv)
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Inference (E-step)
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Inference (E-step)

» The inference step aims to compute the posterior distribution
Ps(yulyr,xv). Due to the complicated relational structures
between object labels, exact inference is intractable.

» Therefore, we approximate it with another variational
distribution gyp(yy|xv) using the mean-field method:

ao(yulxv) = [T ao(ynlxv). (6)
neU

where n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.
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Inference (E-step)

> To model the distribution of each object label in gy, we
parameterize gp(yn|xy) with a graph neural network (GNN),
which learns object representations for label prediction:

qo(yn|xv) = P(yn|softmax(Wyhg.n)). (7)
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Inference (E-step)

» With the mean-field formulation, the optimal distribution
qo(yn|xv) satisfies the following condition:

log gg(yn[xv) =
E g6 (yneaynulx) 108 Po(YnlyNB(n), Xv)] + const.

(8)

where the right side of the condition involves expectation with
respect to gp.

» To further simplify the condition, we estimate the expectation
by using a sample drawn from qg(yng(n)nulxv), resulting in:

EQe(YNB(n)nU|Xv) [|Og p¢>(yn IYNB(n)a XV)]
= log py(YnlINB(n)> XV)-

(9)
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Inference (E-step)

> In the above formula, ng(n) = {Jk}kenB(n) is defined as
follows: for each unlabeled neighbor k of object n, we sample
Yk ~ qo(yk|xv), and for each labeled neighbor k of object n,
¥« is set as the ground-truth label.

» In practice, we find that using one sample from
qo(yne(n)nulxv) yields comparable results with multiple
samples

> Based on Eq. (8) and (9), the optimal gy(yn|xv) satisfies:

qo(Ynlxv) = Pp(YnlINB(n) XV), (10)
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Inference (E-step)

» To learn the optimal gg(yn|xy), we start with using the
current value of 6 to compute py(yn|YnB(n)s XVv)-

» Then the value of py(yn|InB(n),Xv) is fixed as target, and we
update 6 to minimize the reverse KL divergence between

qe(yn|xv) and the target ps(yn|Yng(n),xv), yielding the
objective function below:

00,0 =D Bp, (yngnsim ) [108 Go(ynlxv)]. (11)
nelU
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Inference (E-step)

P> gy can be also trained by predicting the labels for the labeled
objects.

» Therefore, we also let gy maximize the following supervised
objective function:

O =Y _ log qs(yalxv)- (12)
nel
where y, is the ground-truth label of n.

» By adding Eq. (11) and (12), we obtain the overall objective
for optimizing 6:
Oy = 0971./ + 09,1_. (13)
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Learning (M-step)
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E-step to M-Step

Eqy(yulxv)log Po(yLs yulxv) — log ga(yulxv)],

» In the variational E-step (a.k.a., inference procedure), the goal
is to fix py and update the variational distribution gs(yu|xv)
to approximate the true posterior distribution py(yu|yr, xv).

» In the M-step (a.k.a., learning procedure), we fix gy and
update p, to maximize the likelihood function below:

(@) = Eqy(yulxv) 108 ps(yL, yulxv)]-
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Learning (M-step)

» Maximize {p;(¢):

CpL(8) £ Eqyyuixn) [ 108 Po(Yalyng(ny xv )], (14)
neVv

> Only the conditional distribution pg(ya|yng(n),xv) is required
for pg in both the inference and learning steps (Eq. (11) and
(5))

» Therefore, instead of defining the joint distribution of object
labels ps(yv|xv) by specifying the potential function, we can
simply focus on modeling the conditional distribution.
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Learning (M-step)

» Here, we parameterize the conditional distribution
Po(YnlyNB(n), Xv) with another non-linear graph neural
network model (GNN) because of its effectiveness:

Po(Ynlyng(n)s Xv) = P(ynlsoftmax(Wyhg ). (15)

where the object representation hy , is learned by GNN
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Learning (M-step)

» When defining py(ynlyng(n),xv), GNNg only uses the object
labels ynp(n) surrounding the object n as features, but GNN,,
is flexible to incorporate other features.

» For example, we can take both the surrounding object labels

YNB(m) and surrounding attributes xyg(,) as features in GNN,
(as discussed in Experiments)
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Learning (M-step)

» When optimizing p, to maximize Eq. (5), we estimate the
expectation in Eq. (5) by drawing a sample from gg(yy|xv).

» More specifically, if nis an unlabeled object, then we sample
Yn ~ qo(yn|xv), and otherwise we set ¥, as the ground-truth
label.

> ¢ can be optimized by maximizing the following objective
function:

Op = Z log ps(§nlInB(n)s XV )- (16)
neVv
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Optimization
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Optimization

» First pre-train the inference model gy with the labeled objects.

» Then we alternatively optimize p, and gy until convergence.
» Afterwards, both py and gy can be employed to infer the
labels of unlabeled objects.
» In practice, we find that gg consistently outperforms pys, and
thus we use gy to infer object labels by default
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Optimization

E-Step: Inference
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M-Step: Learning

P> gy uses the attributes of its surrounding objects to learn its
representation, and further predicts the label

» In contrast, ps uses the labels of the surrounding objects as
features. If a neighbor is unlabeled, use label sampled from gy

» In the E-step, py predicts the label for the central object,
which is then treated as target to update gy

» In the M-step, gy predicts the label for the central object,

which serves as the target data to update py
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Optimization

Algorithm 1 Optimization Algorithm

Input: A graph G, some labeled objects (L, yy ).
Output: Object labels y¢; for unlabeled objects U.
Pre-train gg with y 1, according to Eq. (12).
while not converge do
[-] M-Step: Learning Procedure
Annotate unlabeled objects with gg.
Denote the sampled labels as y;.
Set ¥v = (yr,¥v) and update p, with Eq. (15).
[-] E-Step: Inference Procedure
Annotate unlabeled objects with py and §y .
Denote the predicted label distribution as py(y/).
Update gy with Eq. (11), (12) based on py(yv), ¥ r.-
end while
Classify each unlabeled object n based on gg(y ., |xv ).
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Results

Table 2. Results of object classification (%). [*] means the results
are taken from the corresponding papers.

Category Algorithm Cora Citeseer Pubmed
SSL LP 74.2 56.3 71.6
PRM 77.0 63.4 68.3
SRL RMN 713 68.0 70.7
MLN 74.6 68.0 753
Planetoid * 75.7 64.7 77.2
GNN GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0
Wr/o Attr. in pg 83.4 73.1 81.4
GMNN With Attr. in py 83.7 72.9 81.8
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