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Information Theory Basics



Information Content

Information content = the amount you learn from an event E:

I(E) = —log(Pr(E)) = log <PrEE)>

Suppose you know Pr(E) =1

You don't learn anything when you're told E occurs
= I(E)=0

e Basic intuition: you learn more from surprising (i.e., unlikely) events

(hence information content is also called “surprisal™)



Weather Example

If it's sunny:

e Reduction in uncertainty = 1/0.75 = 1.333
o /(S)=log(1.333) =0.41

If it's raining:

e Reduction in uncertainty = 1/0.25 = 4
e /(R)=log(4) =2



Entropy = expected amount of information:

ZPr ) log(Pr(x))

“Amount of uncertainty about a random variable X"

“Virginia weather is unpredictable” = "Virginia weather has high
entropy”



Important Entropy Measures

Joint entropy: H(X,Y) = — Zx,y Pr(x, y)log(Pr(x,y))
Conditional entropy: H(Y[X)=—3_  Pr(x,y)log (PIQS?Q)’))
e If X and Y are independent: H(Y|X) = H(Y)

If Y is a deterministic function of X: H(Y|X) =0




Mutual Information

Mutual information:

I(X,Y) = H(X) — H(X]Y)

L 2R

Amount of info gained about X when you observe Y

Reduction in uncertainty about X when you observe Y
If X and Y are independent, /(X,Y) =0
If X is a deterministic function of Y, I(X,Y) = H(X) = H(Y)
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KL Divergence

Dri(PI|Q) = ZP |og( (X)>

Expected value of the log differences of two distributions

Also called “relative entropy”

Measure of difference between two distributions

e Not a distance metric

Not symmetric



KL Divergence and Mutual Information

I(X,Y) = D (Pr(X, Y)||Pr(X)Pr(Y))

e Ml is just KL Divergence of product of marginals from the joint
distribution

e |.e., amount of extra information needed if we use the marginals
instead of the joint distribution



Information Bottleneck Theory



Information Plane

1(Y;M)

Info Plane with tanh Activations (toy data from IB paper)
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Information Bottleneck

Developed by Naftali Tishby's group [7, 6]
Uses the idea of the information plane and mutual information to argue:

1. DL uses two phases: (1) initial fitting phase and (2) compression
phase

2. Compression phase causes DL's strong generalization performance

3. Compression phase occurs because of the diffusion-like behavior of

SGD
4. Ml is estimated with binning
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Mutual Information Estimation

For each layer h activity, want to compute:
I(h; X) = H(h) — H(h|X)

The issue: h is not discrete
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Continuous Activity Problem

If his continuous then, let h = Z (because we're already used H for

entropy):
H(Z) = - /sz(Z) log pz(z)dz

If X is a delta function (as it is in our case), then pz is a delta function,
and so H(Z) = —©
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Two Workarounds

To make H(h) finite, we can try two approaches:

1. Discretize h by binning [6]

2. Add noise to convert h into a Gaussian mixture [3, 4, 5]

In both cases, we assume h is a vector of i.i.d dimensions.
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Workaround 1: Binning

Do T = bin(h) and compute p; = the probability T; is in bin b;:

N
H(T)=—>_pilogp;

Because f(X; W) = h is a deterministic mapping, we have:
H(T|X)=0
Which means:

I(T; X)=H(T)—H(T|X)=H(T)
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About Binning

e Valid way of approximating MI (it's what Tishby does in [6]), but
has issues

e How to determine bin width?
e This is a hyperparam that makes a pretty big difference

e The “compression” stage of the IB theory could mostly just be tanh
tending to map activities to the extreme bins (thus resembling a
coin toss)
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Workaround 2: Adding Noise

e Assume the observed distribution of samples = true distribution
e Use T = h+ e where e ~ N(0,02/)

e Aka, T is a mixture of Gaussians, with one Gaussian centered at
each sample

17



Kernel Density Entropy (KDE) Estimation

Kolchinsky et al (2017) [3, 4] MI upper bounds:

I(T;X)=H(T) < ——Zlog pzexp< 1lhi = hy ||2) — H(T),

And:
I(T;Y)=H(T)— H(T|Y)

1 1 1[1hi — hilI3
< H(T)U—Zp/ B Z |Ogﬁ Z P\ 52
‘5 .

(Lower bounds are the same, except replace o2 with 40?)
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IB Theory Pros

e Mutual information is a useful tool for exploring the relationships
between outputs, inputs, and layers

e Information plane is a useful tool for visualizing training

e Tishby is right that hidden layers compression task-irrelevant
information

e Bottleneck bound is probably useful
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IB Theory Cons

e Refutation paper: [5]

e There isn't a general DL information plane; it depends greatly on
the activations used

e The two-phase idea seems like it's entirely an artifact of using tanh
layers (which no one uses...)

e No clear connection between compression and generalization; models
with poor compression can generalize well

e Compression phase with tanh isn’t actually caused by SGD

e Compression can occur during the training phase, not some distinct
compression phase
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Information Theory and the
Spectral Domain




Graph Fourier Transform

Classical Fourier Transform:

20) = (e = [ xeria = Fixw) )
Graph Fourier Transform:
N—1
(M) =6 U) = ) x(Nup (i) = F{x(i)} (2)
i=0
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Convolution

Classical Convolution:
f(t) = (x=* h)(t) = /]RX(T)h(t —7)dr (3)

Issue: how do you time shift using 7 in the vertex domain? Convolution
Theorem is useful:

Fxxhy = F{x(t)} - F{h(t)} (4)

(This is also the theory behind FFT-based and Winograd convolution)
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Graph Convolution

Using the convolution theorem and replacing complex exponentials with
Laplacian eigenvectors:

T
.

(e (i) = D RON)AA) (i) (5)

i

Il
o

Interpretation: vertex-domain convolution = spectral domain
element-wise multiplication
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Computing Graph Convolutions

Another way of showing graph convolution:
h+x=U((U"h)® (UTx)) = UAU x (6)

where H = diag(h, ..., h,) = h(A) are the spectral filter coefficients.
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Computing Graph Convolutions

Approximations:

e Chebynets: Approximate h x with kth-order Chebyshev polynomials
— hi=h(\) = (2— X))k
e GCN: set k =1 and use normalized Laplacian with self-loops

— hj = (1 — \;)¥; approximate k > 1 with multiple layers

GCN:
hex~© (DY2AD12) x (7)
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Cross-Correlation

Classical cross-correlation:
Ra(t) = (xx b)) = [ x(r)" (e + 7)er (8)

Cross-correlation theorem:
Flxxhy = FIx(O) - F{h(e)} (©)

Graph cross-correlation:

=

Ranli) = (ex B)(i) = 3 £O) A un(i) (10)

Il
o

(Note the complex conjugate; if X not complex, cross-correlation =
convolution)
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Station Time-Series Processes

If x(t) is a (strict) stationary time-series process, then:

1. E[x;] = p for some constant
2. Var[x;] = o2 for some constant o2

3. Cov(x¢, x¢+p) is a function of the delay h but not t

Intuitively: x(t) is always the same data-generating process.
Strict stationarity is required for time-series linear regression.
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Spectral Density and Autocorrelation

Energy spectral density:
Sx(€) = [R(Q)I? (11)

Wiener-Khinchin Theorem: if x(t) is a stationary random process:

SXX(C) = f{Rxx} = R)XX(C) (12)
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Spectral Density and Cross-correlation

Spectral Density:

San(€) = F{Ra} = F{(xx h)(7)} (13)
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Spectral Entropy

Treat densities as unnormalized scores:
P(A) = Ix(A)I? = Su(Ai) = Rc(N) (14)

Normalize to treat as a probability density:

P(\i)

P S ROY) (15)

Spectral entropy of X:

H(X) = *Zp; log p; (16)
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Spectral Density and Feature Locality

e Spectral density provides information on locality of feature
distribution

e If the power spectrum decays at higher frequencies, it indicates local
feature smoothness

e For “natural” images, [2] state:

E(IX(Q)P) ~¢™2 (17)
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Mutual Information and Frequency

[1] provides that for a pair of Gaussian stationary time-series processes
x(t) and y(t):

I(09) =~ [ 1ogl1 = Ry ()7ReA (18)

Can we define something similar for graph signals?
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