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Survey Goals



Review Goals

1. Explain and unify theoretical origins of graph convolutions

2. Explain the key challenges

3. Survey the existing algorithms
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1. Theoretical Origins of Graph Convolutions

Theoretical tools underpinning graph convolutions date to 1990s and

earlier:

• < 1990: classical convolution, Fourier transform, convolution

theorem, uncertainty principle

• Daubechies, 1990: The Wavelet Transform [2]

• LeCun et al., 1995: Convolutional Neural Networks [7]

• Hammond et al., 2011: Wavelets on Graphs via Spectral Graph

Theory [4]

• Shuman et al., 2012: The Emerging Field of Signal Processing on

Graphs [8]
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1. Theoretical Origins of Graph Convolutions

Concept Continuous Discrete Euclidean Graphs

Structure Time
Regularly structured

space
Adjacency matrix

Time to Frequency
Fourier Transform

(FT)
Discrete FT (DFT) Graph FT

Fourier Basis
Complex

exponentials

Discrete complex

exponentials

Laplacian

eigenvectors

Filter Shifting τ variable Toeplitz operator None

Efficiency FFT FFT

Polynomial approx.

of Fourier basis

(and others)

Localization
Continuous Wavelet

Transform (CWT)

Discrete Wavelet

Transform (DWT)

Spectral graph

theory wavelets

How do we fit all of the above in context?
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2. Explain the Key Challenges

Graph convolution algos are contingent on the problems they circumvent:

• Generalize Euclidean filtering → no regular structure

• No regular structure → no vertex domain shift operator

• No vertex domain shift → Fourier definition

• Fourier definition → need vertex localization

• Need vertex localization → use polynomial filter approx.

• No circulant structure → can’t use traditional Fourier basis

• No traditional Fourier basis → Use Laplacian Fourier basis

• Laplacian Fourier basis → no FFT

• No FFT → need Chebyshev approx.
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3. Survey Existing Algorithms

• Spectral Networks (2013) [1]

• Spatially Localized Graph Convolutions (2015) [5]

• Chebyshev Nets (2016) [3]

• GCNs (2016) [6]

• Graph Attention Networks (2017) [9]
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Classical Signal Processing

Basics



Why does this matter?

At least a few reasons:

1. Much of the theory and inspiration behind convolutional networks is

from classical signal processing; we need to have a hang on some of

these concepts

2. Continuous domain (e.g., time) is usually more intuitive than vertex

domain

3. We want to understand how our tools have changed as they’ve been

ported to new domains
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Classical Convolution

When using a filter g to smooth out a signal f :

f (t) = (x ∗ g)(t) =

∫
R
x(τ)g(t − τ)dτ (1)
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Classical Convolution
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Convolution Properties

• Continuous case: time-invariance (shift with the τ parameter)

• Discrete case: shift-invariance (shift with a Toeplitz matrix; more on

this later)

• Commutative

• Convolution theorem: convolution in time domain = multiplication

in Fourier domain (more details coming up)

• Convolution

f(x(t); θ)x(t) y(t)

Figure 1: LTI theory: convolution describes linear time-invariant (LTI) systems
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The Fourier Transform

Converts a signal from time domain to frequency domain:

f̂ (ζ) = F{f (t)} = 〈f , e2πiζt〉 =

∫
R
f (t)e−2πiζtdt (2)
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Interpreting Classical Fourier Transforms

Lower values in frequency domain → smoother signal
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Interpreting Classical Fourier Transforms
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An Important Point!

In general: a Fourier transform is just an inner product of a signal with

some Fourier basis:

F{f } = 〈f ,Φ〉

where Φ = {φn} is an orthonormal basis of square-integrable functions. If

we define our own Φ, we can define our own Fourier Transform.
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Convolution Theorem

Convolution in time domain = point-wise multiplication in frequency

domain:

F{x ∗ g} = F{x(t)} · F{g(t)} (3)

Alternatively:

(x ∗ g)(t) = F−1{F{x(t)} · F{g(t)}} (4)
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Convolution Theorem

Important to us for three reasons:

1. Explains what convolution does in the frequency domain

2. Computing in the Fourier domain can be faster than convolving in

time domain

3. We’ll need it to define graph convolutions later
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Convolution Theorem and Frequency Filtering

• Classical filtering: amplifying or attenuating frequencies of the signal

f̂out(ζ) = f̂in(ζ)ĝ(ζ)

where ĝ(·) is the ”transfer function.”

• Taking an inverse Fourier transform of the above:

fout(t) =

∫
R
f̂in(ζ)ĝ(ζ)e2πiζtdζ = (fin ∗ g)(t)
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Frequency Filtering

Figure 2: A classical low-pass filter: attenuate the high-frequency components

of an input signal (e.g., reduce treble in a song)
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The Time-Frequency Localization Trade-off

• As we’ll see, constructing localized graph filters is non-trivial

• High localization in time domain means low localization in frequency

domain and vice versa

• Has deep roots–Heisenberg’s uncertainty principle:

σxσp ≥
~
2

• Gabor limit in signal processing:

σtσf ≥
1

4π
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An Extreme Example

A delta function and its Fourier transform:
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Striking a Balance - Wavelets

Gabor/Morlet wavelets:
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Gabor Filters

Time/space and frequency localization makes them very useful for

detecting low-level features:

Hypothesis from neuroscience: visual cortex cells are very similar to

Gabor filters
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Recap

• Convolution uses one function to create a sort of “weighted

average” with another function

• Convolution in time domain = multiplication in frequency domain

• A Fourier basis is the eigenbasis of our convolution operator

• Law of nature: hard to localize a filter in both time and frequency

domain

• Filters reasonably localized in both are useful for image processing
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Discrete Euclidean Convolution



Main Assumptions

Inputs (images, videos, sounds) are composed of patterns that are:

1. Locality

2. Stationarity/translation invariance

3. Hierarchical/multi-scale
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Locality

• Nearby pixels are related

• When a CNN applies a filter, the filter is spatially localized
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Translation Invariance

Same idea that we saw in LTI theory:
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Hierarchical/Multiscale

Result of CNN training: low-level filters resemble Gabor filters, high-level

filters look like actual things
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Convolution as a Linear Operator

We can express convolution with a filter as a linear operator:

x ∗ g = Gx (5)

Example:

x1 x2 x3 x4 x5

g1 g2 g3

y1 y2 y3

G =

g1 g2 g3 0 0

0 g1 g2 g3 0

0 0 g1 g2 g3


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Convolutions and Circulant Structure

• Circulant matrix: each row is just the previous row shifted to the

right (as in previous example)

• Shift-invariant linear system ⇐⇒ G is a Toeplitz matrix (circulant

matrices are Toeplitz matrices)
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Convolutions as Linear Operators

G is diagonalized by a Fourier basis:

G = UΛU>

where we can use a discrete Fourier basis as our orthonormal basis:

uk =
[
e

i2πkn
N |n = 0, 1, ...,N − 1

]>
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Discrete Fourier Transform

The discrete Fourier transform:

x̂k =
N−1∑
n=0

xne
− i2π

N kn (6)

Or using matrices:

x̂ = U>x = F{x} (7)

where U is the “DFT basis” matrix (the columns of U are a set of N

independent eigenvectors)
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Convolutions as Linear Operators

And so we can compute convolution as:

x ∗ g = UΛU>x

= Ug(Λ)Ux

= U

ĝ0 . . .

ĝN−1

Ux

= U
(
U>g � U>x

)
= F−1{F{g} · F{x}}

(8)
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Convolutions as Linear Operators

Three important points:

1. If G is circulant, it’s a spatially localized filter

2. If G is circulant, Gx ∈ O(n log n) using FFT

3. If G is not circulant, Gx ∈ O(n2)
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Circulant Matrices and FFT

• Connection to FFT: FFT divide and conquer factorizes G into log n

sub-problems if G is circulant

• Each sub-problem ∼ O(n)→ O(n log n) total (big mood)

• PyTorch, TensorFlow, etc. use FFT-based implementations of conv

layers
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Graph Convolution



Goal

• Generalize convolution to graphs

• Ensure filter localization

• Ensure efficiency
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Challenges

Lots of problems:

• Intuitively: no way to shift a filter matrix around a graph

• No shift-invariance because our filter operator G doesn’t have a

circulant structure

• How do we define convolution on graphs?

• Can’t use discrete Fourier basis. Need to pick a new one

• (As we’ll see) Hard to compute efficiently with our new basis
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New Fourier Basis: Laplacian Eigenvectors

Laplacian matrix:

L = D − A

Which acts as a second-derivative operator on graphs:

(Lf )(i) =
∑

j∈N (i)

Wi,j [f (i)− f (j)]
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The ∇ Operator

• A pseudo-vector: ∇ = [ ∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn
]

• Gradient: ∇f = [ ∂f∂x1 ,
∂f
∂x2
, ..., ∂f∂xn ]

• Divergence: ∇ · f = ∇ · [f1, f2, ..., fn] = ∂f1
∂x1

+ ∂f2
∂x2

+ ...+ ∂fn
∂xn

• Curl (three dimensions):

∇× F =
(
∂Fz

∂y −
∂Fy

∂z

)
i +
(
∂Fx

∂z −
∂Fz

∂x

)
j +
(
∂Fy

∂x −
∂Fx

∂y

)
k

• Laplacian: ∇ · ∇f = ∇2f = ∂2f
∂x2

1
+ ∂2f

∂x2
2

+ ...+ ∂2f
∂x2

n
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Laplacian for Manifolds
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What is the Graph Laplacian?

How do we define ∇ · ∇f = ∇2f for graphs? Three questions:

1. What does f mean for graphs?

2. What does the gradient ∇f mean for graphs?

3. What does the Laplacian ∇ · ∇f mean for graphs?
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1. Functions Over Graphs

• f : V → R
• For example: the degree of each node

• In other words: degree of a node is like its potential

Graph

Vertex

De
gr

ee

Vertex Function

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
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2. Gradient of Degree Function

• Need an analog to ∇ = [ ∂∂x ,
∂
∂y ,

∂
∂z ]

• Incidence matrix K : each node gets a row and each edge gets a

column

• If outgoing edge, Kn,e = −1

• If incoming edge, Kn,e = 1

• Neither: Kn,e = 0

41



Incidence Matrix K

Graph
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Gradient of Degree Function

Graph
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3. Laplacian Operator for Graphs

∇ · ∇ = KK> = L =


2 −1 −1 0 0

−1 2 −1 0 0

−1 −1 4 −1 −1

0 0 −1 1 0

0 0 −1 0 1

 (11)

L = D − A (12)

(where D is the degree matrix and A is the adjacency matrix)
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Graph Divergence

Graph
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Divergence and Smoothness

Graph
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Divergence and Smoothness
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Summary

Physics Graphs

Potential: V Vertex function: f

∇ K : incidence matrix

∇V : field K>f : graph gradient

∇2: Laplacian KK> Graph Laplacian

∇2V : Laplacian of V KK>f : Graph Laplacian of f
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Fourier Transform and Laplacian

What’s the connection to the Laplacian operator?

∇2g = λg (16)

for

g = e2πiζt (17)

−∇2e2πiζt = − ∂2

∂t2
e2πiζt = (2πζ)2e2πiζt (18)

I.e., the Fourier transform = inner product of a function and an

eigenfunction of the Laplacian.
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Spectral Convolution

With our fancy new Fourier basis and the convolution theorem we can

define graph convolution:

x ∗ g = F−1{F{x} · F{g}} (19)

= F−1{x̂ · ĝ} (20)

= F−1{U>x� U>g} (21)

= U
(
U>x� U>g

)
(22)

= Ug(Λ)Ux (23)
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Generic Spectral Filtering

Define our filter as:

ĝθ(Λ) = diag(ĝθ(λ0), ..., ĝθ(λn−1))

I.e., g is visiting each frequency component λl and tweaking it somehow.

y = g ∗ x = F−1{ĝ · x̂} (24)

= F−1{ĝ(Λ)U>x} (25)

= Uĝ(Λ)U>x (26)

= ĝ(L)x (27)
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The Localization Problem

• Our generic spectral filter isn’t spatially localized

• Hammond et al, 2011: “Wavelets on Graphs via Spectral Graph

Theory” [4]

• Defined localized wavelet filters and used Chebyshev polynomials to

approximate the Laplacian (sound familiar?)
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Polynomial Filters

• In general, frequency filtering like this:

f̂out(λl) = f̂in(λl)ĥ(λl)

is not localized whatsoever in the vertex domain

• A trick: use a polynomial filter like:

ĥ(λl) =
K−1∑
k=0

θkλ
k
l
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Why Polynomial Filters?

Some theoretical and intuitive reasons:

• Tl;dr: polynomial interpolation and Taylor series

• In a local area, think about the frequencies needed to approximate

that area

• Basically same idea as Taylor Series, Fourier Series, etc.

• Also: close connection to Lagrange and Chebyshev polynomials (in

fact, both of these are used to compute polynomial interpolation in

practice)
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Localized Graph Filters

Main goal: filter doesn’t affect far away nodes. It turns out the Laplacian

will help with this:

y(i) =
N−1∑
l=1

x̂(λl)ĝ(λl)ul(i) (28)

=
N∑
j=1

x(j)
K−1∑
k=0

θk(Lk)i,j (29)

(30)

Which is localized because (Lk)i,j = 0 if nodes i and j are more than K

hopes away from each other (in fact, this is a graph wavelet)
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Localized Filters

Written with matrices:

gθ(Λ) =
K−1∑
k=0

θkΛk (31)

Which when we apply to x, we get:

y = Ugθ(Λ)U>x (32)
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Problems

Need to compute

y = Ugθ(Λ)U>x

which is O(n2)
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Chebyshev Nets and GCNs



ChebyNets [3]

Basic idea: we can avoid using the explicit Laplacian Fourier basis by

approximating it with Chebyshev polynomials:

gθ(Λ) =
K−1∑
k=0

θkTk(Λk) (33)
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GCNs

• ChebyNets where we set k = 1 to create one layer:

gθ(Λ) = θkTk(Λ) (34)

• Use augmented normalized L for numerical stability

• Full layer:

Y = σ(AXW) (35)
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Spectral Filters
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