PyTorch-BigGraph: A Large-Scale Graph
Embedding System

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca
Wehrstedt, Abhijit Bose, Alex Peysakhovich [1]
Facebook Al Research, SysML 2019

Presenter: Derrick Blakely
May 13, 2019

University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Table of contents

1. Introduction

2. Graph Embedding Model
3. PBG System
4. Experiments

5. Conclusion

Introduction

Relationship Graphs
Friends
(\USEFS

Listened to,
Bookmarked,
Bought
!

Produced

Songs

f

Contains

Albums

Belongs .

Genres

(listened to, is friends with, etc.).

Collaborated with

Figure 1: A graph with entities (users, songs, etc) connected by relations

Graph Embedding

Embedding: learned map from entities to vectors that encode
similarity between entities

Word embeddings: word ¥ vector

Graph embedding: node ¥ vector

Intuition: connected nodes should be more similar than unconnected
nodes

Not the same GNNs

Why Graph Embeddings?

Unsupervised

Task-agnostic node representations

Features can be used for downstream tasks

Nearest neighbors are semantically meaningful

Graph Embedding Model

Graph Embedding Formalism

Graph G = (V;R;E)

* V: nodes aka entities
e R: relations

e E: edges; e 2 E = (s;r;d) = (source, relation, entity)
Score function for each edge:

= Vectors of parameters for each entity and relation type: s; r; 4
= Score function f(s; r; q)

Score Functions

f(si vy a)=sim g(s)(s r);g(d)(d; r)
Composed of two parts:

1. Relation operator g: linear transformation, translation, complex
multiplication

2. Similarity function sim: dot product or cosine similarity

Several Different Score Functions

Model Scoring Function Relation parameters | Oy Ospace
RESCAL (Nickel etal,, 2011) | ¢ W,e, W, € RK O(K?) O(K?)
TransE (Bordes et al,, 2013b) | [[(es + wr) — eollp w, € REK O(K) O(K)
NTN (Socher et al., 2013) uT fle Wi Ple, +Vy [:O] +br) gTEEI[E;I;DD’u bfﬂgf,f O(K?D) | O(K?D)
DistMult (Yang et al,, 2015) | < wr, e, 00 > w, eRE O(K) O(K)
HolE (Nickel et al., 2016b) wl (F~Y[Fles] © Fleo]]) w, € RE O(KlogK) | O(K)
ComplEx Re(< wy, €5, 8 >) w, € CK O(K) O(K)

Figure 2: Score functions shown in “Complex Embeddings for Simple Link
Prediction” [2]

Model g(x,6;) sim(a, b)
RESCAL | A,z <ab>
TransE x40, cos(a, b)
DistMult | z©® 6, <a,b>
ComplEx | 2@ 0, Re{<a,b>}

Figure 3: Score functions supported by PBG

Graph Embedding Scoring

Intuition: maximize f () for edges that exist and minimize f () for edges
that don’t exist.

=) Margin/hinge objective:

> X
L= max(f(e) f(")+ ;0)
e2G e’2S

e f(e)=cos(s; r+ ¢) {score for an actual edge in the graph

e f(e") =cos(s; r + q) { score for an edge that isn’t in the graph
(aka, a negative sample)

e : margin hyperparameter

e Minimum value is 0

Their Hinge Loss

Objective

A

A

A f(e) - f(=e’)

Figure 4: If f(e) —f(e') < —A\,L=0,iff(e)—f(e') > -\ L="F(e)—f(e)

Constructing Negative Samples

Take a real edge and replace the source or destination with a random
node.
S =F(@"r;d)js' 2Vg [f(s;r;d)jd" 2 Vg
el 8!

Figure 5: Creating a negative sample by replacing source B with either A or D,
while leaving the relation unchanged.

10

PBG System

Partitioning

= Nodes divided in N shards; edges divided into N2 buckets

< Single machine: 2 partitions used at a time; others swapped to disk

e Distributed training: buckets with disjoint partitions trained
simultaneously

Nodes
(destination entity types)

Edges
(24)

Nodes
(source entity types)

Edges
(31)

11

Embedding Quality Loss

Two problems:

1. If you don’t sample edges i.i.d, convergence is slower
2. Partitioning changes distribution of negative samples

12

Distributed Training

Three types of communication need to happen:

1. Synchronizing bucket accesses
2. Exchanging partitions

3. Sharing common parameters

13

	Introduction
	Graph Embedding Model
	PBG System
	Experiments
	Conclusion

