
PyTorch-BigGraph: A Large-Scale Graph

Embedding System

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca

Wehrstedt, Abhijit Bose, Alex Peysakhovich [1]

Facebook AI Research, SysML 2019

Presenter: Derrick Blakely

May 13, 2019

University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Table of contents

1. Introduction

2. Graph Embedding Model

3. PBG System

4. Experiments

5. Conclusion

1

Introduction

Relationship Graphs

Figure 1: A graph with entities (users, songs, etc) connected by relations

(listened to, is friends with, etc.).

2

Graph Embedding

• Embedding: learned map from entities to vectors that encode

similarity between entities

• Word embeddings: word → vector

• Graph embedding: node → vector

• Intuition: connected nodes should be more similar than unconnected

nodes

• Not the same GNNs

3

Why Graph Embeddings?

• Unsupervised

• Task-agnostic node representations

• Features can be used for downstream tasks

• Nearest neighbors are semantically meaningful

4

Graph Embedding Model

Graph Embedding Formalism

Graph G = (V ,R,E)

• V : nodes aka entities

• R: relations

• E : edges; e ∈ E = (s, r , d) = (source, relation, entity)

Score function for each edge:

• Vectors of parameters for each entity and relation type: θs , θr , θd

• Score function f (θs , θr , θd)

5

Score Functions

f (θs , θr , θd) = sim
(
g(s)(θs , θr), g(d)(θd , θr)

)
Composed of two parts:

1. Relation operator g : linear transformation, translation, complex

multiplication

2. Similarity function sim: dot product or cosine similarity

6

Several Different Score Functions

Figure 2: Score functions shown in “Complex Embeddings for Simple Link

Prediction” [2]

Figure 3: Score functions supported by PBG

7

Graph Embedding Scoring

Intuition: maximize f (·) for edges that exist and minimize f (·) for edges

that don’t exist.

=⇒ Margin/hinge objective:

L =
∑
e∈G

∑
e′∈S′

e

max (f (e)− f (e′) + λ, 0)

• f (e) = cos(θs , θr + θd) – score for an actual edge in the graph

• f (e′) = cos(θs , θr + θd) – score for an edge that isn’t in the graph

(aka, a negative sample)

• λ: margin hyperparameter

• Minimum value is 0

8

Their Hinge Loss

Objective

-λ

λ

f(e) - f(e’)

Figure 4: If f (e)− f (e′) ≤ −λ,L = 0, if f (e)− f (e′) > −λ,L = f (e)− f (e′)

9

Constructing Negative Samples

Take a real edge and replace the source or destination with a random

node.

S ′
e = {(s ′, r , d)|s ′ ∈ V } ∪ {(s, r , d ′)|d ′ ∈ V }

e′ ← S ′
e

Figure 5: Creating a negative sample by replacing source B with either A or D,

while leaving the relation unchanged.

10

PBG System

Partitioning

• Nodes divided in N shards; edges divided into N2 buckets

• Single machine: 2 partitions used at a time; others swapped to disk

• Distributed training: buckets with disjoint partitions trained

simultaneously

11

Embedding Quality Loss

Two problems:

1. If you don’t sample edges i.i.d, convergence is slower

2. Partitioning changes distribution of negative samples

12

Distributed Training

Three types of communication need to happen:

1. Synchronizing bucket accesses

2. Exchanging partitions

3. Sharing common parameters

13

PBG System Overview

14

Batched Negative Sampling

• 10-100 negative samples per real edge

• Training time dominated by negative samples

• Solution: corrupt a batch of 100 edges with the same set of random

nodes

15

Batched Negative Sampling Advantages

1. Reduce random-access memory bandwidth by a factor of 100

2. Use matrix multiplications to compute f (·)

16

Experiments

Datasets

• LiveJournal user-user interaction graph

• Twitter user-user interaction graph

• Youtube user-user interaction graph

• FreeBase Wikipedia knowledge graph

17

Negative Batching

18

FreeBase

19

FreeBase

20

Conclusion

Strengths

• Can handle very large graphs

• Good partitioning strategy

• Convincing experiments

• Probably actually works pretty well (FB uses it, lots of GitHub starts)

21

Weaknesses

• Their partitioning causes embedding quality degradation

• Only intended for unsupervised graph embedding

• Doesn’t benefit from GPUs (intended for CPU only)

•

22

References i

A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and

A. Peysakhovich.

Pytorch-biggraph: A large-scale graph embedding system.

arXiv preprint arXiv:1903.12287, 2019.

T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard.

Complex embeddings for simple link prediction.

In International Conference on Machine Learning, pages 2071–2080,

2016.

23

	Introduction
	Graph Embedding Model
	PBG System
	Experiments
	Conclusion

