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Introduction



Relationship Graphs

Figure 1: A graph with entities (users, songs, etc) connected by relations

(listened to, is friends with, etc.).
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Graph Embedding

• Embedding: learned map from entities to vectors that encode

similarity between entities

• Word embeddings: word → vector

• Graph embedding: node → vector

• Intuition: connected nodes should be more similar than unconnected

nodes

• Not the same GNNs
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Why Graph Embeddings?

• Unsupervised

• Task-agnostic node representations

• Features can be used for downstream tasks

• Nearest neighbors are semantically meaningful
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Graph Embedding Model



Graph Embedding Formalism

Graph G = (V ,R,E )

• V : nodes aka entities

• R: relations

• E : edges; e ∈ E = (s, r , d) = (source, relation, entity)

Score function for each edge:

• Vectors of parameters for each entity and relation type: θs , θr , θd

• Score function f (θs , θr , θd)
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Score Functions

f (θs , θr , θd) = sim
(
g(s)(θs , θr ), g(d)(θd , θr )

)
Composed of two parts:

1. Relation operator g : linear transformation, translation, complex

multiplication

2. Similarity function sim: dot product or cosine similarity
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Several Different Score Functions

Figure 2: Score functions shown in “Complex Embeddings for Simple Link

Prediction” [2]

Figure 3: Score functions supported by PBG
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Graph Embedding Scoring

Intuition: maximize f (·) for edges that exist and minimize f (·) for edges

that don’t exist.

=⇒ Margin/hinge objective:

L =
∑
e∈G

∑
e′∈S′

e

max (f (e)− f (e′) + λ, 0)

• f (e) = cos(θs , θr + θd) – score for an actual edge in the graph

• f (e′) = cos(θs , θr + θd) – score for an edge that isn’t in the graph

(aka, a negative sample)

• λ: margin hyperparameter

• Minimum value is 0
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Their Hinge Loss

Objective

-λ

λ

f(e) - f(e’)

Figure 4: If f (e)− f (e′) ≤ −λ,L = 0, if f (e)− f (e′) > −λ,L = f (e)− f (e′)
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Constructing Negative Samples

Take a real edge and replace the source or destination with a random

node.

S ′
e = {(s ′, r , d)|s ′ ∈ V } ∪ {(s, r , d ′)|d ′ ∈ V }

e′ ← S ′
e

Figure 5: Creating a negative sample by replacing source B with either A or D,

while leaving the relation unchanged.
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PBG System



Partitioning

• Nodes divided in N shards; edges divided into N2 buckets

• Single machine: 2 partitions used at a time; others swapped to disk

• Distributed training: buckets with disjoint partitions trained

simultaneously
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Embedding Quality Loss

Two problems:

1. If you don’t sample edges i.i.d, convergence is slower

2. Partitioning changes distribution of negative samples
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Distributed Training

Three types of communication need to happen:

1. Synchronizing bucket accesses

2. Exchanging partitions

3. Sharing common parameters
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PBG System Overview
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Batched Negative Sampling

• 10-100 negative samples per real edge

• Training time dominated by negative samples

• Solution: corrupt a batch of 100 edges with the same set of random

nodes
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Batched Negative Sampling Advantages

1. Reduce random-access memory bandwidth by a factor of 100

2. Use matrix multiplications to compute f (·)
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Experiments



Datasets

• LiveJournal user-user interaction graph

• Twitter user-user interaction graph

• Youtube user-user interaction graph

• FreeBase Wikipedia knowledge graph
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Negative Batching
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FreeBase
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FreeBase
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Conclusion



Strengths

• Can handle very large graphs

• Good partitioning strategy

• Convincing experiments

• Probably actually works pretty well (FB uses it, lots of GitHub starts)
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Weaknesses

• Their partitioning causes embedding quality degradation

• Only intended for unsupervised graph embedding

• Doesn’t benefit from GPUs (intended for CPU only)

•
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