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Introduction
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Figure 1: A graph with entities (users, songs, etc) connected by relations



Graph Embedding

Embedding: learned map from entities to vectors that encode
similarity between entities

Word embeddings: word — vector

Graph embedding: node — vector

Intuition: connected nodes should be more similar than unconnected

nodes

Not the same GNNs



Why Graph Embeddings?

e Unsupervised

Task-agnostic node representations

Features can be used for downstream tasks

Nearest neighbors are semantically meaningful



Graph Embedding Model



Graph Embedding Formalism

Graph G =(V,R,E)

e V: nodes aka entities
e R: relations

e E: edges; e € E = (s,r,d) = (source, relation, entity)
Score function for each edge:

e Vectors of parameters for each entity and relation type: 6s,0,,04

e Score function f(6s,6,,04)



Score Functions

f (05,0, 04) = sim (g(s)(0s. ), ga) (04, 6:))
Composed of two parts:

1. Relation operator g: linear transformation, translation, complex
multiplication

2. Similarity function sim: dot product or cosine similarity



Several Different Score Functions

Model Scoring Function Relation parameters | Oy Ospace
RESCAL (Nickel etal,, 2011) | ¢ W,e, W, € RK O(K?) O(K?)
TransE (Bordes et al,, 2013b) | [[(es + wr) — eollp w, € REK O(K) O(K)
NTN (Socher et al., 2013) uT fle Wi Ple, +Vy [:O] +br) gTEEI[E;I;DD’u bfﬂgf,f O(K?D) | O(K?D)
DistMult (Yang et al,, 2015) | < wr, e, 00 > w, eRE O(K) O(K)
HolE (Nickel et al., 2016b) wl (F~Y[Fles] © Fleo]]) w, € RE O(KlogK) | O(K)
ComplEx Re(< wy, €5, 8 >) w, € CK O(K) O(K)

Figure 2: Score functions shown in “Complex Embeddings for Simple Link
Prediction” [2]

Model g(x,6;) sim(a, b)
RESCAL | A,z <ab>
TransE x40, cos(a, b)
DistMult | z©® 6, <a,b>
ComplEx | 2@ 0, Re{<a,b>}

Figure 3: Score functions supported by PBG



Graph Embedding Scoring

Intuition: maximize f(-) for edges that exist and minimize f(-) for edges
that don't exist.

—> Margin/hinge objective:

L£=Y">" max(f(e) - f(e') + A,0)

ecGe'eS]

e f(e) = cos(0s,0, + 04) — score for an actual edge in the graph

o f(e') = cos(0s,0, + 04) — score for an edge that isn't in the graph
(aka, a negative sample)

e \: margin hyperparameter

e Minimum value is 0



Their Hinge Loss

Objective

A

A

A f(e) - f(=e’)

Figure 4: If f(e) —f(e') < -\, L =0, iff(e) — f(e') > -\, L = f(e) — f(€)



Constructing Negative Samples

Take a real edge and replace the source or destination with a random
node.
S.={(s',r,d)|s" e VI}U{(s,r,d")|d" € V}

e + S,

& ®

Figure 5: Creating a negative sample by replacing source B with either A or D,
while leaving the relation unchanged.
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PBG System




Partitioning

e Nodes divided in N shards; edges divided into N? buckets

e Single machine: 2 partitions used at a time; others swapped to disk

e Distributed training: buckets with disjoint partitions trained
simultaneously
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Embedding Quality Loss

Two problems:

1. If you don’t sample edges i.i.d, convergence is slower

2. Partitioning changes distribution of negative samples

12



Distributed Training

Three types of communication need to happen:

1. Synchronizing bucket accesses
2. Exchanging partitions

3. Sharing common parameters
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PBG System Overview
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Batched Negative Sampling

e 10-100 negative samples per real edge
e Training time dominated by negative samples

e Solution: corrupt a batch of 100 edges with the same set of random

nodes
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Batched Negative Sampling Advantages

1. Reduce random-access memory bandwidth by a factor of 100

2. Use matrix multiplications to compute f(+)
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Experiments




LiveJournal user-user interaction graph

Twitter user-user interaction graph

Youtube user-user interaction graph

FreeBase Wikipedia knowledge graph
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Negative Batching
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FreeBase

#Parts MRR Hits@10 Time (h) Mem (GB) # Machines #Parts MRR Hits@10 Time (h) Mem (GB)
1 0.170 0.285 3 1 1 0.170 0.285 30

4 0.174 0.286 31 304 2 4 0.170 0.280 23 64.4
8 0.172 0.288 33 15.5 4 8 0.171 0.285 13 30.5
16 0.174 0.290 40 6.8 8 16 0.163 0.276 7.7 15.0
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FreeBase
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Conclusion




Can handle very large graphs
e Good partitioning strategy

Convincing experiments

Probably actually works pretty well (FB uses it, lots of GitHub starts)
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Weaknesses

Their partitioning causes embedding quality degradation

Only intended for unsupervised graph embedding
Doesn't benefit from GPUs (intended for CPU only)
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