
PyTorch-BigGraph: A Large-Scale Graph

Embedding System

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca

Wehrstedt, Abhijit Bose, Alex Peysakhovich [1]

Facebook AI Research, SysML 2019

Presenter: Derrick Blakely

May 13, 2019

University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Table of contents

1. Introduction

2. Graph Embedding Model

3. PBG System

4. Experiments

5. Conclusion

1

Introduction

Relationship Graphs

Figure 1: A graph with entities (users, songs, etc) connected by relations

(listened to, is friends with, etc.).

2

Graph Embedding

• Embedding: learned map from entities to vectors that encode

similarity between entities

• Word embeddings: word ! vector

• Graph embedding: node ! vector

• Intuition: connected nodes should be more similar than unconnected

nodes

• Not the same GNNs

3

Why Graph Embeddings?

• Unsupervised

• Task-agnostic node representations

• Features can be used for downstream tasks

• Nearest neighbors are semantically meaningful

4

Graph Embedding Model

Graph Embedding Formalism

Graph G = (V ;R;E)

• V : nodes aka entities

• R: relations

• E : edges; e 2 E = (s; r ; d) = (source, relation, entity)

Score function for each edge:

• Vectors of parameters for each entity and relation type: �s ; �r ; �d

• Score function f (�s ; �r ; �d)

5

Score Functions

f (�s ; �r ; �d) = sim
�
g(s)(�s ; �r); g(d)(�d ; �r)

�
Composed of two parts:

1. Relation operator g : linear transformation, translation, complex

multiplication

2. Similarity function sim: dot product or cosine similarity

6

Several Different Score Functions

Figure 2: Score functions shown in “Complex Embeddings for Simple Link

Prediction” [2]

Figure 3: Score functions supported by PBG

7

Graph Embedding Scoring

Intuition: maximize f (�) for edges that exist and minimize f (�) for edges

that don’t exist.

=) Margin/hinge objective:

L =
X
e2G

X
e′2S′

e

max (f (e)� f (e0) + �; 0)

• f (e) = cos(�s ; �r + �d) { score for an actual edge in the graph

• f (e0) = cos(�s ; �r + �d) { score for an edge that isn’t in the graph

(aka, a negative sample)

• �: margin hyperparameter

• Minimum value is 0

8

Their Hinge Loss

Objective

-λ

λ

f(e) - f(e’)

Figure 4: If f (e)− f (e′) ≤ −λ,L = 0, if f (e)− f (e′) > −λ,L = f (e)− f (e′)

9

Constructing Negative Samples

Take a real edge and replace the source or destination with a random

node.

S 0
e = f(s 0; r ; d)js 0 2 V g [f(s; r ; d 0)jd 0 2 V g

e0 S 0
e

Figure 5: Creating a negative sample by replacing source B with either A or D,

while leaving the relation unchanged.

10

PBG System

Partitioning

• Nodes divided in N shards; edges divided into N2 buckets

• Single machine: 2 partitions used at a time; others swapped to disk

• Distributed training: buckets with disjoint partitions trained

simultaneously

11

Embedding Quality Loss

Two problems:

1. If you don’t sample edges i.i.d, convergence is slower

2. Partitioning changes distribution of negative samples

12

Distributed Training

Three types of communication need to happen:

1. Synchronizing bucket accesses

2. Exchanging partitions

3. Sharing common parameters

13

	Introduction
	Graph Embedding Model
	PBG System
	Experiments
	Conclusion

