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Background

Interacting system, such as charged particles and particles connected by
springs, are prevalent in nature.

Given the interactions, they can be modeled as physical systems,and the
future behaviours can be predicted via ODE.

The goal is to predict the interaction from observable trajectories only.
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Task

Task: inferring an explicit interaction structure while simultaneously
learning the dynamical model of the interacting system in an
unsupervised way.

Notations:

xti the feature vector of object vi at time t, e.g. location and velocity.

xt “ txt1, , x
t
Nu the set of features of all N objects at time t

xi “ px
1
i , ¨ ¨ ¨ , x

T
i q the trajectory of object i , where T is the total

number of time steps.

Main idea: the structure is latent and will be recovered by variation
inference.
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NRI model is formalized as a VAE, the ELBO to be maximized is:

L “ Eqφpz|xqrlog pθpx |zqs ´ KLrqφpz |xq||pθpzqs

Encoder: qφpz |xq
Decoder: pθpx |zq
Prior distribution:pθpzq “

ś

i‰j
pθpzijq is a factorized uniform distribution

over edges types.
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Encoder: Infer pairwise interaction types zij given observed trajectories
x “ px1, ¨ ¨ ¨ , xT q.

Model: GNN on the fully connected graph without self-loops.

Two types of modules: node embedding and edge embedding.

Posterior: qφpzij |xq “ softmaxph2
pi ,jqq

Sampling: Gumbel-softmax.

zij “ softmaxpph2pi ,jq ` gq{τq
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Decoder: GNN to do reconstruction.

zij ,k denotes the k-th element of the vector zij

Training:
Given training example x , compute qφpzij |xq, then we sample zij from the
concrete reparameterizable approximation of qφpzij |xq. We then run the
decoder to compute µ2, ¨ ¨ ¨ , µT .
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rec error:

´
ÿ

j

T
ÿ

t“2

||x tj ´ µ
t
j ||

2

2σ2
` c

KL reg:
ÿ

i‰j

Hpqφpzij |xqq ` c
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Neural Relational Inference with Fast Modular
Meta-learning

Ferran Alet, Erica Weng, Tomás Lozano Pérez, Leslie Pack Kaelbling

NeurIPS 2019
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meta learning
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Inner Loop: Learn how to compose basis functions for each individual task
Outer Loop: Optimize the parameters of all basis.
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Composition schemes:

sum

attention based weighted sum

concatenation

A general function-composition tree, where the local modifications
include both changing which fi is used at each node, as well as adding
or deleting nodes from the tree.
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Meta testing phase:
All modules are fixed, we only need to find an optimal structure S P S for
the specific task according to the loss on the training set.

S˚ “ arg min
sPS
pDtrain

metatest , S, θq

Algorithm: simulated annealing.
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Meta training phase:
For each task, in the inner loop, find the optimal structure with simulated
annealing on training set.
in the outer loop, optimize the loss on test set with respect to module
parameters.
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meta relational learning

Modules to be learned: node embedding msi and edge embedding msij .
Models: message passing.

where µtji “ mSij ps
t
i , s

t
j q

Applying this procedure T times to get st`1, ¨ ¨ ¨ , sT ; the whole process is
differentiable, allowing us to train the parameters of mSi ,mSij end-to-end
based on predictive loss.
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Automated relational meta learning

Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li,
Zhenhui Li

ICLR 2020
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Meta learning category:

black-box based meta learner: L2L by gradient descent by gradient
descent.

optimization based meta learner: MAML type.

metric based meta learner: Siamese neural network.

Basic assumption:
Tasks are related, specifically, Ti „ PpT q
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Limitations:

globally shared meta learners fail to handle tasks from different
distributions, which is known as task heterogeneity.

Related works:
Customize globally shared meta-learner for each task:

Probabilistic meta learning

Hierarchically structured meta learning
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Main idea:

a meta-knowledge graph, which is designed to organize and memorize
historical learned knowledge

a task specific prototype-based graph, which taps into the
meta-knowledge graph to acquire relevant knowledge for enhancing
its own representation

utilize the enhanced prototype-based representation to customize the
shared meta learner.
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Task Ti specific prototype-based relational graph:

Vertex:

cki “
1

Ntr
k

Ntr
k

ÿ

j“1

εpxjq,

where Ntr
k denotes the number of samples in class k

Relational graph:

ARi
pc ji , c

m
i q “ σpWr p|c

i
j ´ c im|{γr q ` br q.
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Global meta-knowledge graph:

G “ pHG ,AG q, where HG “ thj |@j P r1,G su P R
Gˆd and

AG “ tAG phj , hmq|j ,m P r1,G su P R
GˆG

Weight:
AG ph

j , hmq “ σpWop|h
j ´ hm|{γoq ` boq.
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To enhance the learning of new tasks with involvement of historical
knowledge.

Construct a super-graph:Si “ pAi ,Hi q, where

Ai “ pARi
,AS ;AT

S ,AG q P R
pK`GqˆpK`Gq

Hi “ pCRi
;HG q P R

pK`Gqˆd

ASpc
j
i , h

kq “
expp´||pc ji ´ hkq{γs ||

2{2q
K
ř

k 1“1

expp´||pc ji ´ hk 1q{γs ||2{2q

UVA (UVA) Qdata 201909 28 / 34



Propagate knowledge from meta-knowledge graph G to the
prototype-based relational graph Ri by GNN.

Hpl`1q “ MPpAi ,H
plq;W plqq,

Information-propagated feature representation for the prototype-based
relational graph Ri as the top-K rows of HpLq , which is denoted as
ĈRi

“ tĉ ji |j P r1,K su.
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Task-specific knowledge fusion and adaptation.

Two vertex sets CRi
(the raw prototype graph) and ĈRi

(prototype
representations after absorbing the relevant knowledge from the
meta-knowledge graph) contribute the most to the creation of the
task-specific meta-learner.

To get the dense representation:

qi “ MeanPoolpAGqpCRi
qq “ meanpAGqpc ji qq, Lq “ ||CRi

´AGq
decpAG

qpCRi
qq||

ti “ MeanPoolpAGqpĈRi
qq “ meanpAGqpĉ ji qq, Lt “ ||ĈRi

´AGq
decpAG

qpĈRi
qq||
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tailor the task-specific information to the globally shared initialization θ0:

θ0i “ σpWg pti ‘ qiq ` bgq ˝ θ0,

Loss function:

I
ÿ

i“1

Lpfθ0i´α∇Lpfθ,D
tr
i q
,Dts

i q ` µ1Lt ` µ2Lq,
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(1) Sinusoids: zpx , yq “ assinpwsx ` bsq, where
as „ Ur0.1, 5.0s, bs „ Ur0, 2sws „ Ur0.8, 1.2s;
(2) Line: zpx , yq “ alx ` bl , where al „ Ur3.0, 3.0s, bl „ Ur3.0, 3.0s;
(3) Quadratic: zpx , yq “ aqx2` bqx ` cq, where
aq „ Ur0.2, 0.2s, bq „ Ur2.0, 2.0s, cq „ Ur3.0, 3.0s;
(4) Cubic: zpx , yq “ acx3` bcx2` ccx ` dc , where
ac „ Ur0.1, 0.1s, bc „ Ur0.2, 0.2s, cc „ Ur2.0, 2.0s, dc „ Ur3.0, 3.0s;
(5) Quadratic Surface: zpx , yq “ aqsx2` bqsy2, where
aqs „ Ur1.0, 1.0s, bqs „ Ur1.0, 1.0s;
(6) Ripple: zpx , yq “ sinparpx2` y2qq ` br, where
ar „ Ur0.2, 0.2s, br „ Ur3.0, 3.0s.
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