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Task: Homogeneous, multi-source, few-shot, supervised domain
adaptation

@ multi-source: labeled data from multiple source domains are available
@ homogeneous: all source domains are in the same data space R

o few-shot and supervised: in target domain, there are only a few
labeled data available

Background:

In most existing work, the assumptions are relied on the similarity or small
discrepancy of representation distributions P(®(X)), or conditional
distributions P(®(X)|Y), P(Y|®(X)).

These distribution based assumptions may not fit for transfer learning from
apparently different distributions.
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Assumption:
Sharing data generating mechanism (causal SEM) across different
domains.

Intuition:
Human cares about causal knowledge, because once discovered, it applies
to different systems.

Motivating Example:
@ Predict disease risk from medical records.
o Data distribution varies for different lifestyle.

@ Common pathological mechanism across different regions.
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SEM

SEM: The joint distribution can be factorized into the product of
independent components.

P(Xl,XQ,- s ,Xn) = ﬁP(X,-|pa(X)

X1 = filpa,, S1)
Xz = fi(pay, S)
X3 = fi(pay, S;)
Y = fi(pay, Sa)

Where S; are independent variables.
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Moreover, if the causal graph is acyclic, then it can be further reduced to:

X1 = fi(pay, 51) X1 S
Xy = fy(pag, S2 X S
2 fa(pag, Sz) i ’z — 2
Xy = fipay. Ss) X3 53
-, Y Sy

Y = filpay, Si) :
Structural equations Reduced form

The assumption of the paper is this structural equation f is shared across
different domains.
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Notation:
@ input subspace X € RP~1,
e YVeR,
@ As a result, the overall data space Z = X x Y € RP, each labeled
data is noted as Z = (X, Y)

@ the set of distributions on RP is noted as @

Basic setup: pry, be a target distribution over Z, G is a hypothesis set
Gc{g:RP1 - R} I:GxRP —|0,B] be the loss function. The goal
is to find g € G such that R(g) = E,., /(g, Z) is minimized.

Also suppose we have labeled data from K distinct source distributions
{Pi}_y over Z, that is, we have iid samples Dy = {ZZ}7; ~ px
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Key assumption
There exists a set of D dimensional IC distributions g7z, gx € @, and a
smooth, invertible function f : RP? — RP such that the data generation
mechanism can be modeled as a two-step process:

] Slirlc ~ gk

° Z5F = F(SE)
And similarly for target domain: Z; = f(S;), S; ~ q7ar-
Benefits:

Now, no constraint on the similarity of the distribution enable the model
to better accommodate intricate distribution shift.
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Algorithm

Algorithm:

@ Performing ICA on the labeled data from source domains to estimate
the shared transformation f = ICA(D1,- -+, Dk)

o Using the learned f to extract IC of the target domains
S = f_l(Z,'), i=1,2,n71s
o Data augmentation on the IC space, and get §;
@ Synthesize more target data samples: Z; = £(5;)
o fit the predictor with augmented data of the target domain.
g* =argminl(g,z)
geg

University of Virginia (UVA) 201909



Estimating f using source domain data:

Nonlinear ICA, specifically generalized contrastive learning(GCL), will be
used to estimate f, based on the identification of nonlinear ICA, an
auxiliary variable u also has to be observed. So the domain indices will be
used to train a binary classifier:

the classification task to be trained in GCL is

D
rro(z,u) = > va(FH(2)g, u),
d=1

consisting of (£, {a}5_,), the classification task of GCL is logistic
regression to classify (Z27, k) as positive and (Z7', k' # k) as negative.
domain contrastive learning criterion to estimate f:

arg min Z Z ;}gfc, ))+Ek1¢k¢(—rf,¢((2,§fc,k'))))

Fvay 1 "
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@ Extract IC of the target domain:
§i = f_l(zi)a |ZI| = NTar

o Inflate the target IC
|§‘ = NTar,

where each §; is of D dimension, every two dimensions are
independent. To do augmentation, they inflate the set of IC values by
taking all dimension-wise combinations of the estimated IC.
Concretely, for each dimension, there are nt,, choices, thus, the total

i« 2D
number of augmented data is nT,,

¥ R ¥ %
“ofy 4, LY

(a) Labeled - i (d) Pscudo

target data (b) Find IC {c) Shuffle target data
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@ Synthesis target data
zj = 7?(5,'), |2‘ = n?ar

o Fit a predictor with augmented data

72/ (g:2) + Allgll>
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Dataset

they use the gasoline consumption data, which is a panel data of gasoline
usage in 18 countries over 19 years. Each country is considered as a
domain.

The dataset contains four variables, and are widely-used for domain
adapting regression tasks, especially for multi-source transfer learning.
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Challenging common assumptions in the
unsupervised disentangled representations

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Ratsch, Sylvain
Gelly, Bernhard Schélkopf, Olivier Bachem

ETH Zurich, MaxPlanck Institute for Intelligent Systems, Google Brain
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The key idea behind the unsupervised learning of disentangled
representation is that real word is generated by a few explanatory factors
of variation.

Data generating process:

@ sample a multivariate latent random variable z from a distribution
P(z). Z corresponds to semantically meaningful factors of variation
of the observations.

@ The observation x is sampled from the conditional distribution P(x|z)
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The goal of representation learning is to find r(x), which satisfies:

@ contain all the information present in x in a compact and
interpretable structure,

@ being independent from the task at hand,
@ be useful for downstream tasks,

@ enable to preform interventions and to answer counterfactual
questions.

Learning of disentangled representations is an important step towards the
goal.
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This is no single formalized definition of disentanglement, the key intuition
is that a disentangled representation should separate the distinct
informative factors of variations in the data.

State-of-the-art approaches for unsupervised disentanglement learning are
based on VAE:

7 (x)

r(x)

ry(x)

ry(x)

Assumptions of VAE:
@ A specific prior P(Z),
@ use a DNN to parameterize the conditional probability P(x|z),
@ the posterior is approximated by Q(z|x)

The common theme is to enforce a factorized aggregated posterior

SX Q(z|x) P(x)dx
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In a similar spirit to disentanglement, ICA studies the problem of
recovering independent components of a signal.

And the identification problem in ICA is a special case of disentanglement
representation learning.
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What is unsupervised disentanglement learning?

ri(x)
r(x)

ry(X)

)

ri(x)

(%)

Fylx)

rL.(X)

A change in a single ground-truth factor should lead to a single change in

the representation.

Whether unsupervised disentanglement learning is possible?

Theorem 1. Ford > 1, let (z,x) ~ P denote any generative model which admits a density p(z) = ]'[:;] plz:) and
where z denotes the independent latent variables and x the data observations. Then, there exisis an infinite family of
bijective functions f : supp(z) — supp(z) such that P{z < u) = P(f(z) < u) for all u € supp(z) and E{i"-_ﬁ #0

almost everywhere for all 1 and j.

z and f(z) are completely entangled and they have the same marginal

distributions.
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Conclusion: without inductive biases both on models and data sets,
unsupervised disentanglement learning is impossible for arbitrary
generative model with a factorized prior.

@ Assume we have p(z) and some P(x|z) defining a generative model.

o Consider any unsupervised disentanglement method and assume that
it finds a representation r(x) that is perfectly disentangled with
respect to z in the generative model.

@ Theorem 1 implies that there is an equivalent generative model with
the latent variable 2 = f(z) where 2 is completely entangled with
respect to z and thus also r(x).

@ since f is deterministic and p(z) = p(2) almost everywhere, both
generative models have the same marginal distribution of the
observations x by p(x) = { p(x|z)p(z)dz = § p(x|2)p(2)dz

Since the (unsupervised) dlsentanglement method only has access to
observations x, it hence cannot distinguish between the two equivalent
generative models and thus has to be entangled to at least one of them.
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As a concrete example:

v

—
2y 8y
- =

_ |cos(45), — sin(45)| |z, b oY = — £.2,) =
] = [ sin(45). cos(45) ] [22] P(zy.2) = N(O.I) P&, 2,) = N(O.I)
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In causality and ICA literature:

After observing x, we can construct infinitely many generative models
which have the same marginal distribution of x. Any one of these models
could be the true causal generative model for the data, and the right
model cannot be identified given only the distribution of x
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In practice:

@ The theorem shows that unsupervised disentanglement learning is
fundamentally impossible for arbitrary generative models, this does
not necessarily mean it is an impossible endeavour in practice.

o After all, real world generative models may have a certain structure
that could be exploited through suitably chosen inductive biases.

@ Theorem clearly shows that inductive biases are required both for the
models (so that we find a specific set of solutions) and for the data
sets (such that these solutions match the true generative model)

Inductive biases: the strength of regularization strength, the choice of
neural architecture, different random seed.
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Results 1:

— VAE FVAE = FactorVAE = ATCVAE = DIP-VAE| = DIP-VAE-

| Matric = TC (sanpled) , . . Metrig = TC (mean}
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Figure 1. Total correlation based on a fitted Gaussian of the sam-
pled (left) and the mean representation (right) plotted against reg-
ularization strength for Color-dSprites and approaches (except
AnnealedVAE). The total correlation of the sampled representation
decreases while the total correlation of the mean representation
increases as the regularization strength is increased.

Implication:

The considered methods are effective at enforcing an aggregated posterior
whose individual dimensions are not correlated but that this does not seem
to imply that the dimensions of the mean representation (usually used for
representation) are uncorrelated.
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Results 2: how disentanglement is affected by the model choice, the
hyperparameter selection and randomness?

1.00- Metric = Facto[VAE Score _ 1.00- Metrig = FactofVAE Score
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Figure 3. (left) FactorVAE score for each method on Cars3D.
Models are abbreviated (0=8-VAE, 1=FactorVAE, 2=3-TCVAE,
3=DIP-VAE-], 4=DIP-VAE-II, 5=AnncaledVAE). The variance is
due to different hyperparameters and random seeds. The scores are
heavily overlapping. (right) Distribution of Factor VAE scores for
FactorVAE model for different regularization strengths on Cars3D.
In this case, the variance is only due to the different random seeds.
‘We observe that randomness (in the form of different random
seeds) has a substantial impact on the attained result and that a
good run with a bad hyperparameter can beat a bad run with a
good hyperparameter.

Implication:
The disentanglement scores of unsupervised models are heavily influenced
by randomness (in the form of the random seed) and the choice of the

hyperparameter (in the form of the regularization strength).
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Results 3: Are these disentangled representations useful for downstream
tasks in terms of the sample complexity of learning?

ate GVAE ess FTCVAE  e4e DIP-VAE-II
424 FactoVAE  s»s DIPVAE!  vvv AnnealedVAE

Metric = FacjorVAE Score

Jasereq

Efficiency (GBT)
)
e ‘
&

saiud;p

)

0.4 0.6 0.8 1
Value

Figure 6. Statistical efficiency of the FactorVAE Score for learning
a GBT downstream task on dSprites.

Implication:

There is no clear evidence that disentangled representations will be useful
for downstream tasks, but there are many more potential notions of
usefulness such as interpretability and fairness that we have not considered
in our experimental evaluation.
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Suggestions:

@ The role of inductive biases and implicit and explicit supervision
should be made explicit: unsupervised model selection persists as a
key question.

@ The concrete practical benefits of enforcing a specific notion of
disentanglement of the learned representations should be
demonstrated.

@ Experiments should be conducted in a reproducible experimental
setup on data sets of varying degrees of difficulty.
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Continuously indexed domain adaptation
Hao Wang, Hao He, Dina Katabi

MIT CSAIL
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Motivation:

Existing domain adaptation focus on transferring knowledge between
domains with categorical indices: such as A — B, or if multi-source
domains are available, then the domain adaptation is between

A17A27"' 7An_)B

o——©O

One to One
Source Domain Target Domain
Xeand Y X; Predict¥,
Many to One .l .
Multiple Source Domains Single Target Domain
Many to Many . .

Multiple Source Domains Multiple Target Domains
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For example, the most frequently used two datasets for domain adaptation
are MNIST and SVHN, either adpating from MNIST to SVHN or adapting
from SVHN to MNIST.

Digits adaptation Cross-modality adaptation (NYUD)

- BERNO . g )

- LA SNE

pe——— || |
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There are many tasks involve continuous indexed domains.

Motivating Example 1:

In medical applications, one needs to do transfer learning across patients
of different ages.

(nfinitely Many)
Continuously Indexed Target Domains

(infinitely Many) Setup: i~
Continuously Indexed Source Domains + 30 continuously indexed domains + Source ->Target
* Ground-truth labels (red and blue)

Motivating Example 2:

Underwater robots have to operate at different water depths and viscosity,
and one expects that adaptation across datasets from different depths or
viscosity (e.g., lake vs. sea) should take into account the relationship
between the robot operation and the physical properties of the liquid in
which it operates.
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A direct method is treating the age of the source and target domain as
domain labels, but this is unlikely to yield the optimal result, since it
doesn’t consider the distance between different domains.

In other word, if the distance of domain indices are close d(uy, u2), the
joint distributions P(yy,, Xy, ), P(Vu,, Xu,) are also similar.

How do existing methods work?

oL oL,

a5 — i~
Qe Lot

_)‘zw,

‘/ ¢ domain classifier G(16,)

L4 ). —A

Y e,

feature extractor G¢(-;85) ’{'fp /‘[ U

D || © ecomin iwa
L,

[ =) ] 9L, Closs LD

forwardprop  backprop (and produced derivatives) 004

%
P\

The role of discriminator: binary classifier determines whether the data
comes from source domain 1, or from target domain O.
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Task: unsupervised domain adaption, which means we only have labeled
data in the source domain and unlabeled data in the target domain.

@ We have a set of continuous domain indices: U = Us U U, also U is a
metric space.
@ In source domains whose indices are u? € Us, we have labeled data

{(,7}/,7 /)/ 1

@ In target domains whose indices are ut € Uy, we have unlabeled data

{(xf, uf)}m,, the goal is to predict {(y, )}m, for data in the target
domains.
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Proposed method

Encoder E Predictor F

Data x
Predicted label y"

Source or target?

Encoder E Predictor F
Data x

z Predicted label y'
Domain index u

Predicted domain index u’

Discriminator D Discriminater D

Previous Domain Adaptation Methods CIDA (Ours)

Main idea: Learn an encoder E and predictor F such that distribution of
encoding z = E(x, u) from all domains U are aligned.
Formally, domain invariant encodings require that

p(z|lu1) = p(z|up) or p(u1|z) = p(uz|z),Vu1,ur €U,
this is achieved with the help of a discriminator D.
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In continuously indexed domains, there is an underlying assumption,
similar domain indices implies similar encoding.

Target
domain 15

15 —
1 \
o3
1]
-03 domain 8 [— —y
=-1.0
i Source \
20 .

domain 1™ . » /
o * - \

-15 -10 -us LY 05 Lo 1s

University of Virginia (UVA) 201909



CIDA

Encoder E Predictor F
Data X > ‘
E Z F |=—» Predicted label y
Domain index U 2

D = Predicted domain index u’

For D:
Minimize (D(z) — u)? Discriminator D

ForE, F:
Minimize L(F(z),y) — (D(z) — u)?

In vanilla CIDA, the discriminator D is designed to regress the domain
index.
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Probabilisitc CIDA

Challenges for vanilla CIDA:

Challenge for CIDA Beforsiiraiing Challenge for CIDA CIDA may end up with
....................... - p(ulzy)
4 Ideally, after training
p(ul
p(u|
.................. >
p(ulz1) E[ulz;] = E[ulz;] = E[u|z3] =2

It is only able to match the expectation which is the first order moments.
In order to match both mean and variance of the distributions p(u|z), they
propose a variant called Probabilistic CIDA.
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Probabilistic CIDA

In probabilistic CIDA, the discriminator predicts the distribution of p(u|z)
instead of providing point estimation, specifically, it outputs both the
mean and covariance of p(u|z) as D,(z) and D,2(z)

the loss function of the D:
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Theoretical analysis

Informal statement:

o CIDA converges, if and only if, the expectation of the domain index
E[u|z] is identical for any embedding z.

o PCIDA converges, if and only if, the expectation and the variance of
the domain index E[u|z] and V[u|z] is identical for any embedding z.
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Results

simulated dataset 1

Domein 15

Domain1

(d) CDANN

(b) Ground Truth

(e) ADDA () MDD (g) CUA (h) CIDA
Figure 1. Results on the Circle dataset with 30 domains. Fig. 1(a) shows domain index by color. The first 6 domains are source domains,
marked by green boxes. Red dots and blue crosses are positive and negative data samples. Black lines show the decision boundaries

ding to model predicti




Results

simulated dataset 2

(¢) ADDA (f) MDD (g) CUA (h) CIDA (ours)

Figure 2. Results on the Sine dataset with 12 domains. The first 5 domains are source domains marked by green boxes. Red dots and blue
crosses are positive and negative data samples. Black lines show the decision boundaries d ding to model predictions.
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Rotating MNIST

The goal is to adapt from regular MNIST digits with mild rotation to
significantly rotated MNIST digits.

Table 1. Rotating MNIST accuracy (%) for various adaptation methods. We report the accuracy at the source domain and each target
domain. X° denotes the domain whose images are rotated by X ° to X + 45°. The last column shows the average accuracy across target
domains. We use bold face to mark the best results.

Method # Target Domains  0° (Source)  45°  90°  135° 180° 225° 270° 315° Average

Source-Only - 99.0 791 440 441 468 327 290 778 50.5
ADDA 1 97.0 727 396 421 438 304 269 770 47.5
DANN 1 98.5 760 381 455 466 347 307 670 484
CUA 7 917 926 922 895 725 656 678 693 78.5
CIDA (Ours) 00 96.5 918 923 945 939 925 932 958 934
PCIDA (Ours) oo 96.6 922 928 949 939 927 93.6 959 93.7
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Healthcare Dataset

They use three medical datasets, Sleep Heart Health Study (SHHS),
MultiEthnic Study of Atherosclerosis (MESA) and Study of Osteoporotic
Fractures (SOF). Each dataset contains full-night breathing signals of
subjects and the corresponding sleep stage labels (‘Awake’, 'Light Sleep’,
‘Deep Sleep’, and ‘Rapid Eye Movement (REM)’).

University of Virginia (UVA)
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Intra-Dataset Adaptaion

Intra-dataset adaptation

Table 2. Accuracy (%) for infra-dataset adaptation. ‘SHHS@Outside — SHHS@(52,75]" means transferring from age range outside
(52,75] (i.e., [44,52]U(75,90]) to (52,75] within SHHS. ‘SO’ is short for ‘Source-Only’. We use bold face mark the best results.

Task SO ADDA DANN CDANN MDD CUA CIDA PCIDA
SHHS@[44,52] — SHHS@(52,90] 774 78.0 77.1 715 T 774 798 80.6

Exg:'“?;“ﬁm MESA@([54,58] — MESA@(58,95] 80.1 807 799 804 803 801 827 825
PO SOF@[75,82] — SOF@(82,90] 747 748 742 744 746 745 167 767
Domain _ SHHS@Ouiside —+ SHHS@(S2T5] 824 BLT 825 823 825 824 822 837
Intorpolation  MESA@Ouiside — MESA@(5875] 835 835 32 8.3 838 834 835 847

SOF@Qutside — SOF @(79,86] 718 715 714 70.9 71.8 715 71.8 73.6

Cross-dataset adaptation

Table 3. Accuracy (%) for cross-dataset adaptation. We use bold face to mark the best results.

Task Source-Only ADDA DANN CDANN MDD CUA CIDA PCIDA
SOF — SHHS 75.6 76.0 75.2 75.6 758 753 759 80.1
SOF — MESA 74.0 75.1 74.6 752 749 7136 748 80.0
SHHS — MESA 82.8 83.0 82.6 82.1 83.0 821 832 85.3
MESA — SHHS 80.7 81.8 80.9 80.9 812 810 808 83.4
SHHS — SOF 8.7 79.5 79.0 79.2 797 7191 81.1 80.9
MESA — SOF 75.9 76.6 77.0 76.9 769 760 793 79.0
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