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Transfer Learning!

Definition (Transfer Learning)

Given a source domain Dg and learning task 7g, a target domain D7 and
learning task 77 , transfer learning aims to help improve the learning of
the target predictive function f(-) in Dt using the knowledge in Ds and
Ts, where Ds # D1, or Ts # Tt.

Learning Process of Transfer Learning

(a) Traditional Machine Learning (b) Transfer Learning

BXY

Fig. 1. Different Learning Processes between Traditional
Machine Learning and Transfer Learning

1A Survey on Transfer Learning, Pan and Yang, IEEE TKDE, 2009
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Category of transfer learning

Determined by the availability of labels, the relationship between Ds and
D+, Ts and Tr, transfer learning can be categorized as follows:
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Domain Adaptation?

Setting:
@ A set of labeled data {xs,ys}T ; from the source domain Ds,
o A set of unlabeled data {x;}7_; from the target domain D,

@ The source domain and the target domain share the same task, i.e.

Ts = Tr.

Why we need the DA?
Deep model trained on one dataset may have infinite error bound on
another similar dataset.

Based on the results of [Yosinski, et.al, NeurlPS2014]:
@ In shallow convolutional layers can learn generic features that tend to
be transferable in shallow layers.
@ In middle layers, features are slightly domain-biased, and the
transferability drops.
@ In deep layers, features are more task or domain specific and are not

_ safely transferable to novel tasks.

2Deep Visual Domain Adaptation: A Survey, Wang and Deng;"NeuralComputing
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Domain Adaptation

Methods:

@ Discrepancy based
o Adversarial based

@ Reconstruction based

Main idea:

Learn features that are both predictive and invariant across different
domains.
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Discrepancy based®

In the paper, maximum mean discrepancy(MMD) is used to measure the
discrepancy of two distributions.
MMD:

MMD(Py, Py) = [ > o(x Z o)l
| I|X€P xePy

Motivation

Using the MMD as a regularization to find the invariant features which are
also predictive.
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Where to insert the MMD regularization?

Starting from a pretrained model (such as AlexNet trained on ImageNet),
find the layer has the smallest MMD on Ds, D;. Insert the regularization
there.

Loss function:
L= Lc(Xs, Ys) + AMMD? (X, X;)
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Adversarial based method*

Main idea: Adding a classifier to distinguish data from two domains.

Three modules:
Feature extractor: G¢(-,0¢), label predictor: G,(-,6,) and domain

classifier: Gg4(-,04).
@ For label predictor, the inputs are the features and labels from source
domain, the goal is to correctly predict the labels.
@ For domain classifier, the inputs are features from both source domain
and target domain, the goal is to correctly distinguish two sets.
@ For feature extractor, the goal is to 1) generate predictive features for
source domain. 2) fool the domain classifier.

*Unsupervised Domain Adaptation by Backpropagation, Ganin and Lempitsky,

ICML2015
201909  10/29
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Energy function:

E(0f,0,,04) = L,(Gy(Gr(xs,0¢);0y),ys) — ALa(Ga(Gr(x; 0f); 0a), ya)

Based on the idea, energy function is optimized to seek the saddle point:

(éfvéy)
bq
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If gradient descent based optimizer is used:

oL oL
Of < Of — M(Tei - )\57(:)
oL
Oy — 0, — F‘Ty (2)
y
oL
Og «— 0q — MT:

To avoid training different module alternatively, a new layer called
gradient reversal layer(GRL) is defined as:

dl dl

GRL.forward(x) = x, GRL.backward (—

) = A

The new loss function is:
E(G,c, (9},, 9d) = Ly(Gy(Gf(Xs, af); Qy), ys)-l-)\Ld(Gd(GRL(Gf(X; Hf)); (90'), yd)

Now, all parameters can be jointly trained with gradient descent.
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MNIST SyN NuM SVHN SYN SIGNS

gl ol

MNIST-M SVHN MNIST GTSRB
SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS
METHOD
TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY .5225 .8674 .5490 .7900
SA (FERNANDO ET AL., 2013) | .5690 (4.1%)  .8644 (—5.5%)  .5932 (9.9%) .8165 (12.7%)
PROPOSED APPROACH 7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)
TRAIN ON TARGET 9596 19220 9942 9980
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MNIST — MNIST-M: top feature extractor layer SYN NUMBERS — SVHN: last hidden layer of the label predictor

s -

(a) Non-adapted (b) Adapted (a) Non-adapted (b) Adapted




Reconstruction based method?®

Motivation

@ Shared representations are vulnerable to contamination by noise that
is correlated with the underlying shared distribution

@ There should be a subspace for each domain contains domain specific
noise, and a common subspace contains shared features.

@ The features in private subspace should be independent of features in
common space.

®Domain Separation Networks, Bousmalis, et.al, NeurlPS2016
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Several modules:

Shared encoder E.(-,6.) as common feature extractor

Private encoder E;(-,0p) as private feature extractor for Dg,

Private encoder Ej(-,ps ) as private feature extractor for Dr,
Shared decoder D.(E.(x) + Ep(x),6q) as a decoder.

Task-related module, such as classifier G(-,0;).

Private Target Encoder E’ (x )—
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Shared Encoder F. (X))

Shared Decoder: D(E.(x) + Ey(x))
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Private Source Encoder E (x*)
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Loss functions:
o for Lss, general cross entropy is used
o for lecon, general L2 loss is used

@ for lyifference, it measures the difference of common features and
private features, to force the independence,

Laire = [|(H2) T H3IIE + [|(HE) T HglI

for Isimilarity, it can be set as a domain classifier with gradient reverse
layer or a MMD module. For domain classifier, the loss is defined as:

ns—+nt
~
i

L= ) {dilogd; + (1 — d;)log(1 - d;)}
i=0

The final loss is the linear combination of the four losses.
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Experiment Results

Model MNIST to | Synth Digits to | SVHN to Synth Signs to
MNIST-M | SVHN MNIST GTSRB
| Source-only 56.6(52.2) | 86.7 (86.7) 59.2 (54.9) | 85.1(79.0) |
CORAL [26] 57.7 85.2 63.1 86.9
MMD [29, 17] 76.9 88.0 71.1 91.1
DANN [8] 77.4(76.6) | 90.3 (91.0) 70.7 (73.8) | 92.9 (88.6)
DSN w/ MMD (ours) | 80.5 88.5 722 92.6
DSN w/ DANN (ours) | 83.2 91.2 82.7 93.1
[ Target-only [ 98.7 [92.4 [99.5 [99.8 |
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© Counterfactual Inference
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What is a counterfactual problem?

Example 1: for a patient x € X the set T of interventions of interest might
be two different treatments t = 0 or t = 1, and the set of outcomes might
be Y = [0,200] indicating blood sugar levels. But for each x, we only
know the result of one treatment, for example Y;_q(x) and need to predict
Yt=1(X).

Example 2: For an ad slot on a webpage x, the set of interventions T
might be all possible ads on the inventory, and the potential result could
be Y = {click, no — click}. Again, for each x we only know the result for
one intervention Y7_y (x), and need to predict the remaining Y7_¢(x)
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@ Let T be the set of potential interventions or actions we are
considering,

@ X the set of contexts,
@ and Y the set of possible outcomes,

@ in this work, they only consider the binary action set T =0, 1
corresponding to control group and treated group, respectively.

@ For each context x € X, the outcome of one of the two actions is
observed.

o We refer to the observed outcomes as the factual outcome y* (x),
and counterfactual outcome yF(x) respectively.
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Quantity of interest

Individualized treatment effect (ITE) for context x is defined as:
ITE(x) = Yi(x) — Yo(x)
Average treatment effect (ATE) is defined as:

ATE = E, 0 [ITE(X)]
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Suppose we have n observed samples {(x;, t;, y© )}, where
y,-F =t Yl(X,') + (1 — t,')Yo(X,').

Note PF = {(x;, t;)}"_; and PF = {(x;,1 — ;)}1_;

Generally, source domain PF is different from target domain I5CF, thus it
is a special case of domain adaptation.

University of Virginia (UVA) Qdata 201909 23/29



The model contains two parts, the first part is a representation extractor
® : X — RY, the second part is a predictor h: R x T — R.
The learned representation balances three objectives:
@ enable low-error prediction on factual domain (source domain).
@ enable low-error prediction on unobserved counterfactual domain.
@ the distribution of treatment populations are similar. (the feature
distribution from two domains are similar).

- I—{j loss(h (P, 1), y)
dD

[ )disc(®,_,, ®,_)
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@ The prediction loss on factual domain(source domain) is :

72“7 y/|

@ The prediction loss on counter factual domain(target domain) can't
be calculated directly, since y,-C is unknown. Let j(i) be the nearest
neighbor of x; among the group that received the opposite treatment
from unit /i, the prediction loss on counterfactual domain is
approximated as:

1 n
- Z; |h(p(xi), 1 — ti) — yj@)’

@ The discrepancy distance is noted as discy
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The final loss is:

BHa,'y ¢7 Z|h XI tl ylF|+ryZ|h XI )_.y_/lzl) +
i=1

ozdiSCH(,E’F, PCF)y

0e® % @ e,
a3 :.:. e ._:-:-.:..:: . yN)’T
Context Representation Qutcome error
x [ loss(h (@,t),y)
Treatment _—_ Imbalance
t disc(Pg, Dy)
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Algorithm:

Algorithm 1 Balancing counterfactual regression

1: Input: X, T, YE: H, N, v, A

2: %, g* = argmin By, ~(®,9) (2)
PEN ,gEH

3: h* = argmingey ; 30, (R(®, t:) — i) + Al
4: Qutput: h*, d*
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Assume

N

BF(¢) = arg min Lpr(8) + MIEEHIE:

A 4
B (9) = argmin Lpcr (8) + AlI5I 13 “

PCF

under some technique assumptions, for both Q@ = PF,Q = we have:

C(Lo(B"(9)) - LQ<BCF<¢>>>2 < discy (BF(¢), 3 (9))+
m.n,2(| F(o.h) =yl 1+ 195 (0, h) — y£F))

heH n
<discH(BF<¢>,BCF<¢>>>+ G)

mm72<| F(0.h) = yF I+ 95 (o, h) - +f2d,f

heH n 4 Ploa
(i
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Table 1. THDP. Results and standard errors for 1000 repeated ex-
periments. (Lower is better.) Proposed methods: BLR, BNN-4-
0 and BNN-2-2. { (Chipman et al., 2010)

Table 2. News. Results and standard errors for 50 repeated exper-
iments. (Lower is better.) Proposed methods: BLR, BNN-4-0
and BNN-2-2. 1 (Chipman et al., 2010)

€ITE €ATE PEHE €rE €ATE PEHE

LINEAR OUTCOME LINEAR OUTCOME

OLS 46+02 0700 58+03 OLS 31+£02 02+00 33%02
DOUBLY ROBUST 3.0+£0.1 0.2+£0.0 5.7+0.3 DOUBLY ROBUST 3.1+0.2 0.24+0.0 3.3+0.2
LASSO+RIDGE 28401 02£00 57+02 LASSO+RIDGE 22401 06+00 34+02
BLR 28401 02+00 57+03 BLR 22401 06+00 33+02
BNN-4-0 3.0£0.0 03+00 56+03 BNN-4-0 21400 03+00 34402
NON-LINEAR OUTCOME NON-LINEAR OUTCOME

NN-4 20+£00 05+00 1.9+0.1 NN-4 28400 11+00 38%02
BART! 21402 02400 1.7+02 BART' 58+0.2 02+00 32402
BNN-2-2 174£00 03+00 1.6+0.1 BNN-2-2 2.0+0.0 03+00 2001
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