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Mutual Information

For two variables X ,Z , their mutual information(MI) is defined as:

MI pX ,Z q “ KLpPpX ,Z q||PpX qPpZ qq “

ż

ppx , zq log
ppx , zq

ppxqppzq
dxdz (1)

Properties

MI pX ,Z q ě 0,

MI pX ,Z q “ 0 ðñ X ,Z are independent,

MI pX ,Z q “ MI pZ ,X q

MI pX ,Z q “ HpX q ´ HpX |Z q “ HpZ q ´ HpZ |X q

MI pX ,Z q measures how much we can learn about X from Y . It is
intractable for the unknown joint and marginal distribution.
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Mutual information neural estimation1

Goal: Estimate mutual information from data.

Main idea: Parameterize the lower bound of mutual information and
recover the mutual information by maximizing the lower bound.

The KL divergence admits the following dual representation

KLpP||Qq ě sup
T :ΩÑR

EPpT q ´ logpEQre
T sq

1Mohamed Ishmael Belghazi et.al., MILA, ICML2018
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Use the neural network to model the function T , and use the empirical
value as an approximation of expectation.

MI pX ,Z q “ sup
θ

1

N

N
ÿ

i“1

Tθprx , zsi q ´ logp
1

M
eTθpxk ,zk qq,

where rx , zsi are sampled from PpX ,Z q, and pxk , zkq are sampled from
PpX qPpZ q.
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Theoretical analysis

Theorem

Let ε ą 0. There exists a neural network parametrizing functions Tθ with
parameters θ in some compact domain θ P Rk , such that:

||MI pX ,Z q ´MIθpX ,Z q|| ď ε

Theorem

Given a family of function with enough capacity and large dataset, with
universal approximation ability of neural network, empirical value can be
arbitrarily close to expected value.

||MIθpX ,Z q ´MIθpXi ,Zi q|| ď ε
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Experiments

Simulation dataset: pX ,Z q „ Npµ,Σq, where µ “ rµx , µz s, and

Σ “

„

Σx ,x ,Σx ,z

Σz,x ,Σz,z



For normal distribution, the analytic form of KL divergence is tractable:

KLpp||qq “
1

2
rlog

|Σ2|

|Σ1|
´n`trpΣ´1

2 Σ1q`pµ
T
1 Σ´1

2 µ1´2µT2 Σ´1
2 µ1`µ

T
2 Σ´1

2 µ2qs
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Invariant Property

Suppose Y “ f pX q ` σ ¨ ε, where f is a deterministic function, then once
σ ¨ ε is fixed, MI pX ,Y q remains invariant.

Experiment result:
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MINE can effectively palliate model collapse in GANs.
Vanilla GAN:

min
G

max
D

logx„Pr
Dpxq ` logz„Np1´ DpG pzqqq

New regularization for G , the mutual information between the samples and
the codes:

I pG rε,C s,C q
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Information Bottleneck

Information Bottleneck(IB):
learn a representation that an input x P X contains about an output y P Y .
An optimal rep z would capture the relevant features of X , while diminish
the irrelevant parts which do not contribute to the prediction of Y
the optimization objective:

min
Z

HpY |Z q ` βI pX ,Z q
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Representation Learning

What is a good representation?

a good representation is often one that captures the posterior distribution
of the underlying explanatory factors for the observed input (Bengio et.al.,
2013)

high mutual information with the input(not low-level noise)

task-dependent statistical properties(independent, separable)

structure contained (high-level semantic information)
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Deep InfoMax2

Main idea: Maximize the mutual information between the representations
and input.
In most benchmark deep models, the computational graph contains several
stages:

X Ñ CΨpX q Ñ EΨpX q “ fΨpCΨpX qq Ñ classifier

2R Devon Hjelm, et.al, MILA, ICLR 2019
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Model

Goal: maximize the mutual information MI pPX ,PEΨpX qq.
In order to optimize the goal, we need to collect data from joint
distribution and marginal distribution.

X ,EΨpX q is sampled from the joint distribution

X ,EΨpX̂ q is sampled from the product of marginal distributions.
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In order to estimate the mutual information, we have several strategies:

Use MINE:

MIw pX ,EΨpX qq “ sup
Tw :ΩÑR

EPpX ,EΨpX qqpTw q´logpEPpX qˆPpEΨpX qqre
Tw sq

Use other divergence

DJSDpX ,EΨpX qq “ sup
Tw :ΩÑR

EPpX ,EΨpX qqp´σp´Tw qq

´ EPpX qˆPpEΨpX qqrσpTw qs

Use the Noise-Contrastive Estimation(NCE):

INCE pX ,EΨpX qq “ EPpxqpTw px ,EΨpxqq ´ EPpX qrlog
ÿ

x 1

eTw px 1,EΨpxqsq
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Local variants

Motivation:
Maximize the average MI between the high-level representation and local
patches of the image.

MIlocal “
1

M2

M2
ÿ

i“1

I pC i
Ψpxq,EΨpxqq
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Prior Matching

If we also have domain knowledge about the representation, we would like
to match the prior distribution, the loss is defined as a GANs loss:

min
EΨ

max
D

logx„Pr
Dpxq ` logz„Pp1´ DpEΨpzqqq

The final loss is the linear combination of three losses (global loss, local
loss and prior matching loss).
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Evaluation

How to measure the quality of learned representations?

Use the representations as the input of classifiers(SVM and NN), and
compare the accuracy.

Calculate the mutual information between the input and
representations.

Add a decoder to reconstruct the input with l2 loss

Measure the independence of the representation using a
discriminator(NDM).
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Results
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