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Mutual Information

For two variables X, Z, their mutual information(MI) is defined as:

MI(X,Z) = KL(P(X, Z)||P(X)P(Z)) = fp(x,z) log p’(’(X’Z)dxdz (1)

x)p(z)
Properties
e MI(X,Z) =
o MI(X,Z) = O <= X, Z are independent,
o MI(X,Z)=MI(Z,X)

e MI(X,Z)=H(X)—H(X|Z)=H(Z)— H(Z|X)
MI (X, Z) measures how much we can learn about X from Y. Itis
intractable for the unknown joint and marginal distribution.
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Mutual information neural estimation!

Goal: Estimate mutual information from data.

Main idea: Parameterize the lower bound of mutual information and
recover the mutual information by maximizing the lower bound.

The KL divergence admits the following dual representation

KL(P||Q) > sup Ep(T)—log(Eqle’])
T:Q—R

'Mohamed Ishmael Belghazi et.al., MILA, ICML2018
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Use the neural network to model the function T, and use the empirical
value as an approximation of expectation.

N
1 1 To(Xk,zk)
MI(X7Z) = Sl:)pN; Tg([X,Z],‘) - Iog(ﬂe ook )a

where [x, z]; are sampled from P(X, Z), and (xx, zx) are sampled from
P(X)P(Z).
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Theoretical analysis

Let € > 0. There exists a neural network parametrizing functions Ty with
parameters 6 in some compact domain 6 € R¥, such that:

IMI(X, Z) = Mlp(X, Z)|| < €

Theorem

| \

Given a family of function with enough capacity and large dataset, with
universal approximation ability of neural network, empirical value can be
arbitrarily close to expected value.

IMlg(X, Z) — Mig(X;, Z;)|| < €
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Experiments

Simulation dataset: (X, Z) ~ N(u, X), where 1 = [ux, pz], and

Yy — |:ZX,X7 ZX,z:|
Zz,xa zz,z
For normal distribution, the analytic form of KL divergence is tractable:

1 1%

KL(plla) = 5llog = —ntr(S5 )+ (0] T3 i —2p3 T3 i T3 o))
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Invariant Property

Suppose Y = f(X) + o - €, where f is a deterministic function, then once
o - € is fixed, MI(X,Y) remains invariant.

Experiment result:

sin(x)
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MINE can effectively palliate model collapse in GANs.
Vanilla GAN:

mGin mgxlogXNPr D(x) + log, n(1 —D(G(2)))

New regularization for G, the mutual information between the samples and
the codes:

I(G[e, C], C)
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(a) Original data (b) GAN (c) GAN+MINE

Figure 4. Kernel density estimate (KDE) plots for GAN+MINE
samples and GAN samples on 25 Gaussians dataset.
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Information Bottleneck

Information Bottleneck(IB):
learn a representation that an input x € X contains about an output y € Y.

An optimal rep z would capture the relevant features of X, while diminish
the irrelevant parts which do not contribute to the prediction of Y
the optimization objective:

min H(Y|Z) + BI(X, Z)
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© Unsupervised learning with mutual information maximization
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Representation Learning

What is a good representation?

a good representation is often one that captures the posterior distribution
of the underlying explanatory factors for the observed input (Bengio et.al.,
2013)

@ high mutual information with the input(not low-level noise)
o task-dependent statistical properties(independent, separable)

@ structure contained (high-level semantic information)

University of Virginia (UVA) Qdata 201909 13 /20



Deep InfoMax?

Main idea: Maximize the mutual information between the representations
and input.

In most benchmark deep models, the computational graph contains several
stages:

X — Cy(X) = Ey(X) = fy(Cy (X)) — classifier

Input image MxM Feature

F feature map vector
)z

Ly v

2R Devon Hjelm, et.al, MILA, ICLR 2019
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Goal: maximize the mutual information MI(Px, Pg,(x))-
In order to optimize the goal, we need to collect data from joint
distribution and marginal distribution.

o X, Ey(X) is sampled from the joint distribution

A~

e X, Ey(X) is sampled from the product of marginal distributions

M x M feature map (see Figure 1)

Score

“Real”

\\ Feature vector

M - /
Discriminator
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O

M x M features drawn from another image
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In order to estimate the mutual information, we have several strategies:
@ Use MINE:

Ml (X, Ey(X)) = . S;P . EP(X,EW(X))(TW)_IOg(EP(X)xP(Ew(X))[eTW])

@ Use other divergence

DPP(X, Eu(X)) = sup Epix.,x)(—0(—Tw))
Tw:Q—R

— Ep(xyx Py (x))[0(Tw)]

@ Use the Noise-Contrastive Estimation(NCE):

INE (X, Eg(X)) = Ep(x)(Tw(x, Ey(x)) — Epx)[log > | e T+ Eu()])

x!
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Local variants

Motivation:

Maximize the average MI between the high-level representation and local
patches of the image.

M x M features M x M Scores
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Local feature (+)
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Prior Matching

If we also have domain knowledge about the representation, we would like
to match the prior distribution, the loss is defined as a GANs loss:

min mDaongXNPr D(x) + log, _p(1 — D(Ey(2)))

Ey

The final loss is the linear combination of three losses (global loss, local
loss and prior matching loss).
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Evaluation

How to measure the quality of learned representations?
@ Use the representations as the input of classifiers(SVM and NN), and
compare the accuracy.
@ Calculate the mutual information between the input and
representations.
@ Add a decoder to reconstruct the input with 12 loss

@ Measure the independence of the representation using a
discriminator(NDM).

dependent
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Table 1: Classification accuracy (top 1) results on CIFAR10 and CIFAR100. DIM(L) (i.e., with the
local-only objective) outperforms all other unsupervised methods presented by a wide margin. In
addition, DIM(L) approaches or even surpasses a fully-supervised classifier with similar architecture.
DIM with the global-only objective is competitive with some models across tasks, but falls short
when compared to generative models and DIM(L) on CIFAR100. Fully-supervised classification
results are provided for comparison.

Model CIFARIO CIFARI00

conv  fc(1024) Y (64) conv  fc (1024) Y(64)
Fully supervised 75.39 42.27
VAE 60.71 60.54 54.61 37.21 34.05 24.22
AE 62.19 55.78 54.47 || 31.50 23.89 27.44
B-VAE 62.4 57.89 55.43 || 32.28 26.89 28.96
AAE 59.44 57.19 52.81 36.22 33.38 23.25
BiGAN 62.57 62.74 52.54 || 37.59 33.34 21.49
NAT 56.19 51.29 31.16 29.18 24.57 9.72
DIM(G) 52.2 52.84 43.17 27.68 24.35 19.98
DIM(L) (DV) 72.66 70.60  64.71 || 48.52 44.44  39.27
DIM(L) (JSD) 73.25 73.62 66.96 || 48.13 4592  39.60
DIM(L) (infoNCE) | 75.21 75.57  69.13 || 49.74 4772  41.61

Table 4: Extended comparisons on CIFAR10. Linear classification results using SVM are over five
runs. MS-SSIM is estimated by training a separate decoder using the fixed representation as input and
minimizing the L2 loss with the original input. Mutual information estimates were done using MINE
and the neural dependence measure (NDM) were trained using a discriminator between unshuffled
and shuffled representations.

Model Proxies Neural Estimators

SVM (conv) SVM (fc) SVM (Y) MS-SSIM || I,(X,Y) NDM
VAE 53.83+0.62 42.14£3.69 39.59 £ 0.01 0.72 93.02 1.62
AAE 55.224+0.06 43.34+£1.10 37.76£0.18 0.67 87.48 0.03
BiGAN 56.40 £1.12  38.42+6.86 44.9040.13 0.46 37.69 24.49
NAT 48.62+£0.02  42.634£3.69 39.59 £ 0.01 0.29 6.04 0.02
DIM(G) 46.8+2.29  28.79+£7.29 29.0840.24 49.63 9.96
DIM(L+G) | 57.55+1.442 45.56 +4.18  18.63 £ 4.79 101.65  22.89
DIM(L) 63.254+0.86  54.06 £3.6  49.62+0.3 45.09 9.18
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