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0 Definition and motivation
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Meta-learning

Meta Learning (learning to learn) aims to learn from previous tasks.
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Why do we need meta learning?

e For task n, we have limited data (n way k shot), hard to find a
classifier without over fitting. (Few-shot learning)

@ For task n, learning prior from previous task 1,2, - k boosts the
performance of n. (Multi-task learning)

@ Fast adaptation, learn shared structure.

Be careful lots of work point out if there is no shared structure for
different tasks.

University of Virginia (UVA) 201909



o Black-box based meta learning.
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Example + Variants: RNN based, attention based. Modeling
p(¢i|D, 0) with neural network.

e Optimization based meta learning (main focus)
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© Multi-task Learning
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Multi-task Learning

MAML, model-agnostic meta learning, optimization framework for meta
learning. (supervised learning and reinforcement learning)
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Main idea: There is shared initialization for all tasks, the target is to find a
good initialization.
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MAML

Machine Learning:
e data distribution D
o data sample {x/, y'} in each batch
e target: find 0, s.t. £(0,D(X)) = D(Y)
Meta Learning:
@ task distribution D,
e task sample {D! , Di} in each batch
o target: find 0, s.t. f(HL, Di.(X)) = Dj,(Y), where
0} = SGDy(Dy, (X), Dy (Y))
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MAML

Multi-task Learning:

e inner task: find 6} opt on D},

e out task: find 0, s.t. Y ||DL(Y) — f(0%, Di.(X))|| is opt
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MAML

During test time:

o 0 j\)ir A dlA[
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Fast adaptation, one step fine-tuning. (Learn prior knowledge from
multi-tasks, and embedding into initialization)

Limitation:
@ a huge computation graph
@ expensive memory cost

@ deterministic method, disregard ambiguity over the underlying
function
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MAML for reinforcement learning:

Algorithm 3 MAML for Reinforcement Learning

Require: p(7): distribution over tasks
Require: «, (3: step size hyperparameters
1: randomly initialize 0
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)
4:  forall 7; do
5: Sample K trajectories D = {(x1,a1,...xg )} using fo

inT;

6: Evaluate Vo L7, (fo) using D and L7, in Equation 4

7 Compute adapted parameters with gradient descent:
0; =0 —aVeLlr,(fo)

8: Sample trajectories D; = {(x1,a1,..Xp)} using fyr
in7T;

9:  end for

10:  Update 6 < 0 — BV > ) L7:(fo;) using each D;
and £7; in Equation 4
11: end while
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Meta-SGD

Not efficient to solve the inner level optimization. (big computational
graph, heavy gradient calculation)

Second order opt, the inner solver have a big effect on the final
performance.
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First order MAML

Vanilla MAML can be formalized as:
arg mein ET(LT,te(Uﬂl-(,tr(G))) (1)

Thus, we have:

8maml = a( 'rte( 'rtr( ))
T te(é\) U7/' tr(e)

where 0 = Ur.tr(0). In the experiments, they found if set U’ = I,
surprisingly, you will get almost some results. (Truncated
back-propagation)
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Besides FOMAML, Reptile also aims to do the similar thing.
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For each task i/, the gradient d—e' is approximated as 6' — 0
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Algorithm 2 Reptile, batched version
Initialize ¢

for iteration = 1,2,... do

Sample tasks 11,79, ...,
fori=1,2,...,ndo

Compute W; = SGD(L~,, ¢, k)
end for
Update ¢ « 6+ ek S0, (Wi — 6)

end for

Vanilla MAML, FOMAML, Reptile have similar experiments, but the last
two is more efficient.

University of Virginia (UVA) 201909 15 /34



Meta-SGD

In meta-sgd, learning rate for inner tasks are set to be parameters, this
trick be helpful.

batch 1 batch 2 batch n
Dtrain(T) test(T;) | Diain(T) test(T;) | Dirain(T) test(T;) |
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Tricks for MAML

Summary:

Idea: Automatically learn inner vector learning rate, tune outer learning rate
(Li et al. Meta-SGD, Behl et al. AlphaMAML)

Idea: Optimize only a subset of the parameters in the inner loop
(Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: Decouple inner learning rate, BN statistics per-step  (Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.
(Finn et al. bias transformation, Zintgraf et al. CAVIA)

Takeaway: a range of simple tricks that can help optimization significantly
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Comparing with Black-box meta learning
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The main difference is modeling the task specific parameters.

where ¢; = 0 — aVgEO Py
f(6, D", VL)
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© Bayesian Meta Learning

University of Virginia (UVA) 201909 19 /34



Bayesian Meta Learning

What does structure even mean?

t=1,...

t=1,...

Two possible share graph. 6 is a share prior knowledge for all tasks.
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Probabilistic MAML

Motivation:
For the new task, you are requiring either no fast adaptation or prior
knowledge embedding.

Question:
How to model uncertainty and model ambiguity?

Solution:
Bayesian meta learning
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Probabilistic MAML

Task ambiguity example:

v Smiling,
v Wearing Hat,
X Young

xEIing,
, v Wearing Hat,
v Young
v Smiling,
v Wearing Hat,
v/ Young
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Probabilistic MAML

Given a new task, we can sample from P(¢'|6, D!), each sample can give
one kind of explanation.

If we directly use standard variational inference to meta learning with
multi-task setting, we have:

max Er[Eq(snipi o) [108 P(Yee| Xte, 9i)] — KL(q(¢i| D}y, 0)|1p(i,0))]  (3)

Limitation: Can only represent Gaussian distributions p(¢;|0)
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Probabilistic MAML

Perform inference on shared variables 6.

The target is to sample from P(®|Di.(X), DL.(Y)).
Procedure:

@ sample from 6,

@ use ancestral sampling, we can sample ¢;, P(¢'|6, D (X), D..(Y))
e key assumption: P(¢/|6, Di (X),Di (Y)) = 6(¢), where:

¢' =0 + aVlog(D.(Y)|D{.(Y),0)

Assumption: sampling from posterior distribution locally.
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Probablistic MAML

Graph used for generation and inference.

After using inference to

Original graphical model compute p(d,| xn, ytrain. g)

N
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Sampling process:

£(6, Diain) o

iling,
smiling, ha N 1Ang young

University of Virginia (UVA) 201909



What does that mean?
The whole distribution of parameters works equally well, with each sample
corresponding to one explanation.

This provides a perspective for interpretability of a meta learning.
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Besides initialization

Besides using initialization as prior knowledge, what else?

For all tasks, using the sharing feature learning structure, whose parameter
is 6.

[;\f\ t=1,...

In this case, the goal is to meta-learn accurate approximation to p(y:|X¢, 0)
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Sharing feature vector

The introduced posterior distribution g4(7|D, %)

6" = argminEp, [KL(p(71%.0) 001D 0)]  (4)
— argmaxE(y o) 108 | p716:%,0)a0(v1D,0)d6]  (5)

The training could proceed as:
@ select a task t at random
@ sampling training data D*!
o form the posterior predictive g4 ()| D*,6)

@ compute the log likelihood on unseen data on D?.
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Diagram

Feature extraction Linear Classifier
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During test time, your number of classes can be different with training.
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@ Bilevel Optimization
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Bilevel Optimization

Bilevel optimization is common problem in machine learning community.
It is defined as:

min{f(\): A e} (6)
f(A) =inf{E(wx, \) : wy € argmin Ly(u)}. (7)
It is widely used in machine learning task:

@ Hyperparameter selection

@ Meta Learning
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Hyperparameter selection
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Meta Learning as bi-opt

For meta learning, this opt target A is shared prior for across all tasks.
The inner target is the optimal of task specific parameters.

Table 1. Links and naming conventions among different fields.

Bilevel Hyperparameter Meta-learning

programming optimization

Inner variables Parameters Parameters of
Ground models

Outer variables Hyperparameters ~ Parameters of

Inner objective

Outer objective

Training error

Validation error

Meta-learner
Training errors
on tasks (Eq. 3)
Meta-training
error (Eq. 4)
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Algorithm 1. Reverse-HG for Hyper-representation
Input: ), current values of the hyperparameter, 7' num-
ber of iteration of GD, 1 ground learning rate, 3 mini-
batch of episodes from D
Output: Gradient of meta-training error w.r.t. A on B
for j = 1to [B| do

w) =0

fort = 1toT do _ _
w] < wi_1 — NV, LI (w]_, X\, D))

cv% «— VL (w%, A, Dyal)

pj — V)\Lj (w]T, )\, Dval)

for t =T — 1 downto 0 do _ _
pj — pj - ai+1nv)\vaj (wiv A, Dgr)
al O‘g+1 [I — NV VLI (w], N, D{r)]

return ) . p’
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