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© Model

e GAN, f-GAN

o WGAN, WGAN-GP, SN-GAN

@ GANs, VAEs and GMMNs, Statistical Analysis and Information
Theory

@ A unified model
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Vanilla GAN analysis?

Task: A image dataset, whose distribution is represented by P,. Find a
function G, s.t. G(N(0,1)) = P,, we note f(N(0,1)) as P;.

D tries to make

D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1
Differentiable .
function D

z samplcd from z sa.mplcd from b

data. model

Differentiable
function G

Figure from NeurlPS 2016
GAN Tutorial (Goodfellow)

Two player minimax problem (zero-sum, saddle point):
e player D distinguishes P, from p,,

@ player G fools discriminator D.

1 Generative Adversarial Nets
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minmax V(D, G) = Ex~p, [log D(x)] + Ex~p,[log(1 — D(x))] (1)

@ D maximize the log-likelihood of a binary classification
@ G minimize the log probability of being classified as 'fake’ by D
To see clearly, fix G, find the optimal D, take the derivative over D:

* pr(x)
D = 00+ p ) @

take into loss function, we get:
mén 2JSD(P,||Pg) — 2log?2 (3)

Minimizing the loss function is equivalent to minimize the JS divergence
betweent P, and Pg.
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Pros and Cons

Pros:
e fast sample method (Compared with MCMC)
@ no inference (Compared with graphic models)
@ visually satisfaction

Cons:
e Training unstable®
e Mode collapse?
e Just do sample memorization*

Step 10k Step 15k Step 20k Step 25k Target

2Improved technlques for tralnlng GANS
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This JS divergence is a special case of f-divergence family, which is defined
as:

(P/I|P) fpg (x) 2 (4)

where f : Rt — R is convex, lower semi-continuous with f(1) =0, also
for the same reason f**(u) = f(u), and:

f(u)= sup {tu—f*(t)}. (5)

tEdOmf*

Take it into the definition, we get a lower bound for f-divergence

D (P/||Pg) = ilég(Exw,[T(X)] — Banp, [FH(T(x))] (6)

5f-GAN: Training Generative Neural Samplers using Variational Divergence
Minimization.
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Using the variational method w.r.t T(x), find the optimal value for T(x):
' pr(x)

T(x) = f(
Pg(x)
The lower bound get tight if T(x) = T*(X).

With this lower bound, we can do reparameterization for f divergence and
get the loss function:

min(Pr[|Pg) = min max(Exp. [Tw(x)] - Expg [F*(Tw ()] (8)

g

); (7)

Name Ds(P|Q) Generator f(u) T*(x)
Kullback-Leibler [ p(x) log 24 da ulogu 1+ log Il(ﬁl
Reverse KL Ja( L) log ‘f(’; dr —logu ;’)((TI
Pearson i (g(@)—p(@))” p @)* g (u—1) 2(22;; -1)
. 2 ;
Squared Hellinger [ (\/ -V ) (Vu—1) ( 5;2; —1)- quf;
Jensen-Shannon 3/ p( log @ ’J(r'q)‘r +q(z)log % dz —(u+1)log & log #;)11)
GAN [ p(x)log m +q(x)log W)m —log(4) wulogu — (u+1)log(u+1) log p(T +q(r)

For_each non-trivial £ there is an important paper come out®.
bLeast square GAN
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Shared limitations

For divergence-based distance, there is a trade off between model covering
and perceptual satisfaction:

q" = argmin, Dk (pllq) q" = argmin, Dx,(q||p)
— S~ [
>> * >> \ *
= - q(2) = | - 4 (2)
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Maximum likelihood Reverse KL

@ picking one mode generate good looking images

@ captures more modes generate blur images
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One possible reason: It is not proper to use JSD to measure the distance
of two distributions. *

Why?(Three lemma)
@ Because P, and P, are two lower-dimensional sub-manifolds.
@ The probability for P, and P, "not perfect align” is 1

o If P,, Py don't perfect align, then there is always a perfect
discriminator D(Takes 1 on P,, 0 on Pg).

"Towards Principle Methods for Training GAN
201909
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If P, and P, are two lower-dimensional submanifolds, and they don't
perfect align(with probability 1), JSD between P, and Py is a constant
log2, regardless of their real distance.

Which means, as the convergence of the discriminator to the optimal, it
can’t provide any guidance to the optimization of G.

Under a mild condition, JSD(P,||Pg) is not continuous w.r.t Py

Target:
@ Pgy is continuous w.r.t 0
@ d(P,||Pg) is continuous w.r.t Pg,
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Wasserstein GAN®

Wasserstein distance(Earth mover distance):

W(Pr.Ps) = __inf . Euyosllbx =yl ©)

Property:
o If gy is continuous w.r.t. 6, then W(P,, Pg,) is continuous w.r.t ¢

o If gy is local Lipschitz, W(P,, Pg,) is continuous and differentiable a.e.

8Wasserstein GAN
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Comparison:
e TV Distance: §(P,||Pg) = sup |pr(A) — pg(A)]
A€y

pr(X>
pg(x)

1 1
0 JSD: JSD(P/||Py) = KL(P|I (P, + Pg)) + KL(P I (Pr + Py))

o KL Divergence: KL(P,||Pg) = §log(

)P (x)dpa(x)

Which tells:

e §(P/||Pg) = 0 <= JSD(P/||Pg) — 0 Norm induced by JSD and
TV are equivalent

o KL(Pg||P;) = 0 = JSD(P,||Pg) —» 0 = W(P/||Pg) — 0

o KL gives strongest topology, then comes JSD, W distance gives the
weakest topology.

Why?
Because W convergence correspond to convergence in distribution.
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Implementation

Kantorovich Rubinstein duality:

W (Py||Pg,) = Hfs|l|Jp<1EX~pr[f(X)] — Exwp,, [F(X)] (10)

Now, we can apply paramterize the distance:

mein max Ex~p, [fw ()] = E,<p(z)[fw(go(2)] (11)

with the constraint Lip(f) < 1.

University of Virginia (UVA)

201909 13 /45



How to let the nn satisfies the constraint:

@ In WGAN, they use weight clipping, this operation will greatly reduce
function space

@ In WGAN-GP?, a better method is proposed.
max Ex-p, [fiu (x)] = Exvp, [fu (%)] + AEzp, [([IVafw (R)]17 = 1), (12)

where X = x + (1 — )X.
@ robust versus architectures
@ generate high quality images
@ more cute-edge architectures used resnet, widely used (2000+
citation)

%Improved Training of Wasserstein GANs
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Robust versus architecture

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)

el P B B Ppigden

G': No BN and a constant number of filters, D: DCGAN

G': 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

P e Sk

Gated multiplicative nonlinearities everywhere in G and D

101-layer ResNet G and D
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High quality images:
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Spectral Normalization GAN

For now, GANs are able to generate high quality images of small size, next
target: Imagenet.

How to revise this Lipschitz constraint.
Consider the discriminator of the form:

F(x,8) = Wla (Wh(ap_1(..ar(W1(x))...))) (13)

Three lemma used:

@ For a linear function Y = WX, the Lipschitz constant M for function
is exactly the spectral norm of the matrix W.

o [[AL- h2||Lip < [|h1]]Lip|[h2]]Lip-
@ For RelLU, Lipschitz constant is 1.

Ospectral normalization for generative adversarial networks
University of Virginia (UVA) Zhe Wang 201909  17/45



pseudo code: normal WGAN, but each linear layer in discriminator is

followed by a spectral normalization W = W /a(W).
To avoid heavy computation, they replace SVD with power method, also

prove the back-propogation for power method.

Welh springer spanil

.i.-‘\ 4 \“.; 59

First time able to train on full Imagenet. Simpler than WGAN-GP.

201909
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So far, we finish the GANs model section, next section is about
comparison with VAE!! and GMMN 1213

1 Auto-Encoding Variational Bayes

2Training generative neural networks via Maximum Mean Discrepancy optimization
BGenerative Moment Matching Networks
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Comparison of popular generative models

VAE: graphical models, data generation process can be summarized in
figure:

Because the intractable of posterior of P(Z|X), so they use an auxiliary
normal distribution Q(Z|X) to approximate P(Z|X).
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Loss function:

log po(X) = E;~q(z|x) log po(x|z) — Dkr(q(z|x)|[pe(2)) (14)
= E,q(z|x) 108 po(z, x) + H(q(z|x)) (15)

@ The first term is the joint log-likelihood of the complete data under
the approximate posterior

@ The second term is the entropy of the approximated posterior.If the
q(z|x) is taken as a normal distribution, the maximization of the
entropy encourage the variance to be bigger, rather than collapse to a
single point.
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VAEs Pro:
@ clear mechanism behind
@ no mode collapse
@ stable to train

VAEs Cons:

@ Generate blurry images (Lots of work claim this is the universal
problem for all MLE method)
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Moment Matching Networks

GMMN (generative moment matching networks), it contains only one
branch, no need of the discriminator or encoder.

Based on What?

If P and Q are same distributions, then all orders moment of the P and Q
should be same under any kind of transformation f

P=Q <= Vf, Ex~p(x)f(x) = Ex~q(x)f(x) (16)

Thus, the measurement of the distance can be formed as

N
B = Il 5 2 @0x) — 7 23000 (17)
i=1

§

However, instead of parameterizing the function ®, < ®(x;), ®(y;) > is
replaced with K(x;, y;).
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Loss function

. 1 N ® 1 Mq) G 2 18
mén||Ni; (Xi)_MZ (Go(2i))l| (18)

GMMN

Uniform Prior

uoneIouan adureg

(a) GMMN (b) GMMN+AE

One can also use a learned kernel in which case, loss function becomes:
1o 1M
. 2
i el 2, 0wl g 33 Ow(Go (2 (19)

University of Virginia (UVA) Zhe Wang 201909 24 /45



1415

Understand GANs from Information Theory

Z ~ Ber(m), P, real distribution and P, generated distribution, there is a
random variable X satisfies:

P(X|Z=0)=Pg,P(X|Z=1) =P, (20)

Target: Seeing lots of samples from both P, and P, you won't be able to
infer .
Method: minimize the mutual information, which is defined as:

1(X,Z) = KL(p(x, 2)llp(x)p(2)) (21)

I(X, Z) =0 <= X, Z are independent < P, = P,

14Im“oGAN:Interpretable Representation Learning by Information Maximising Generative
Adversarial

BHow (not) to train your generative model: scheduled sampling, likelihood, adversarial?
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I(X,Z) = H(Z) + ExEz x log q(z|x) + ExKL[p(z|x)||q(y|x)]
~ max H(Z) + ExEzx log a(z1) (22)

I(X,Z) > H(Z) + muiiXEx,z log g(z|x; V)
=H(Z)+ max mEp, log q(1|x; V) + (1 — 7)Ep, log q(0|x; V)
min (X, Z) = r‘gi)n muéleTFEpr log q(1|x; V) + (1 — m)Ep, (1 — log q(1|x; ¥))
(23)

If 7 = 1/2, this minimization of mutual information gives loss function of
vanilla GAN.
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A unfied model'®

It is always an elegant thing to give an unify model for various generative
models:

Integral Probability Metrics

Yr(Pr, Pg) :=sup| fdP, — J fdPg| (24)
feF JM M

o Wasserstein distance: F = {f : ||f||; < 1}
e TV distance or Kolmogorov distance: F = {f : ||f||c < 1}
e MMD:F = {f : ||f||y < 1}

®Non-parametric Estimation of Integral Probability Metrics
University of Virginia (UVA) Zhe Wang 201909  27/45



© Application and architectures
@ Generative models
@ Other applications: | to | translation, domain adaptation, adversarial
samples, inverse problems
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DCGANY?

Fw

100z =)

Stride 2

Project and reshape

CONV 2

"Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks
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[from lecture slides of UCB]

Supervised Learning CNNs not directly usable

Remove max-pooling and mean-pooling

Upsample using transposed convolutions in the generator
Downsample with strided convolutions and average pooling
Non-Linearity: ReLU for generator, Leaky-ReLU (0.2) for discriminator
Output Non-Linearity: tanh for Generator, sigmoid for discriminator
Batch Normalization used to prevent mode collapse

Batch Normalization is not applied at the output of G and input of D

Optimization details

Adam: small LR - 2e-4; small momentum: 0.5, batch-size: 128
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First visually accepted results:
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Progressive GAN!8

G Latent Latent Latent
v

B T
[ —
—————

1024x1024

R. BR. - B
;i Reals iReals e |Reals

1024x1024
————

D

i v
: X8 [—]
ba T

Training progresses ———————————»

WGAN-GP framework + Engineering work

For G: nearest neighbor filtering, for D: avg-pooling
Progressive adding resolution for G and D

Batch normalization is important

*x® ©® © O ©

We adding new layer for G and D, previous layers are trainable.

1 Progressive Growing of GANs for Improved Quality, Stability,-and Variation
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Really exciting results images of size 1024 x 1024
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It is widely accepted that a conditional version of GAN help the generating
tasks, for example: conditional GAN9, AC-GAN?, BigGAN21.
For BigGAN:

@ Residual block are used
@ Non-local block are used

@ Constrains the Lipschitz constant via an implicit regularizer
(Compared with SN-GAN): ||[WTW — ||2 in the loss.

Z/T\Txyxwxm_u
X ()
TxHxWx512
weight layer sopmax Lo
f(x) THWxTHW
X

identity THWxS12 SI2XTHW THWx512
TxHxWx512 TxHxWx512 TxHxWx512

]:(x) +x [o:xaxt ] [ 1xaxt | [ 1xaxt |

1

T TxHxWx 1024
X

®Conditional Generative Adversarial Nets
2 Conditional Image Synthesis With Auxiliary Classifier GANs
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Architecture of BigGAN
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Other applications

Cycle GAN?2: 4000+ citation, widely use in image to image translation,

combining with U-net is a very powerful tool in medical image processing:
Cross-modality image synthesis.

Monet {_ Photos

Zebras 7 Horses

Summer 7 Winter

photo —>Monet

horse —zebra

winter —> summer

Unsupervised framework: no need of image pairs during training.

2Unpaired Image-to-Image Translation using Cycle-Consistent-Adversarial-Networks
University of Virginia (UVA)
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orange —> apple
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Vanilla GANs can transform the style but can't keep the content
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Aiming at:

F(G(x))=x, Vxe X G(F(y))=y, VyeY (25)
The loss function for Generator
L(G,F,Dx,Dy) = Lgan(G, Dy, X,Y) + Lean(F, Dy, Y, X) + ALcyc (G, F)
in which

Lean(G, Dy, X,Y) =E, p,[log Dy(y)] + Ex<p,[log(l — Dy(G(x))]
Leye(G, F) = Exnp [[IF(G(x)) = X|[1] + Eyp, [IIG(F(y)) — yll1]

G*, F* = i L(G,F,Dy,D
, arg min max (G,F,Dx,Dy)
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Beyond image generation

Adversarial samples®3: Perturbation-based adversarial examples:
mis-classified images that lie on the neighbor of a correctly-classified
images.

Unrestricted adversarial examples: images which are classified differently
from oracle.

Different adversarial examples:

e formulation: WGAN-GP
@ architecture: AC-GAN?*

BConstructing Unrestricted Adversarial Examples with Generative Models
% Conditional Image Synthesis With Auxiliary Classifier GANs
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Loss function for WGAN-GP
max B p, [fw (x)] = Ex~p, [fw (X)] + AEsp[(||Vafw(R)|IP = 1)%], (26)
Loss for adversarial attack:

h = log C(}/source‘g(za YSource))
h = log f(Vtarget|€ (2, Ysource))

/—1i |z — 20| — €,0
o=, 1max(z, z;'| —¢€,0)
=

(27)
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image super-resolution®® (3000+ citation)

Reconstruct 4 pixels from 1 pixel.

B Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network
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Compressive Sensing?®

Compressed Sensing using Generative Models: faster convergence rate +

better results.
! L ;,‘ ’-
BEEREER
EEEEHA
F- 4 . R
CEEECLE
— — _
HEIBCER

Reconstruction from 500 measurements (of n = 12288 dimensional vector)

2 Compressed Sensing using Generative Models
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