Invariant Risk Minimization

Presenter: Zhe Wang https://qdata.github.io/deep2Read

201909

(UVA) Zhe Wang 201909 1 / 24

Content

Introduction

(UVA) Zhe Wang 201909 2 / 24

Invariant Risk Minimization

Zhe Wang

2019-9-13

Invariant Risk Minimization¹

Unreasonable but widely-used assumptions: all training data and test data are i.i.d.

ERM principle:

$$ERM = \mathbb{E}_{e^{train}} \ l[g(x), y] \tag{1}$$

4 / 24

Zhe Wang Invariant Risk Minimization 2019-9-13 2/20

(UVA) Zhe Wang 201909

¹Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, David Lopez-Paz

In real life? No!

Joint data distribution:

Zhe Wang

$$P(X,Y) = P(Y|X)P(X)$$
(2)

2019-9-13

3 / 20

Both components vary w.r.t different environments e.

Why?

correlations = spurious correlation + causal correlation.

(UVA) Zhe Wang 201909 5 /

X: Image, *Y*: {Lamb, Cow}

(UVA)

Causal correlation:
$$\begin{cases} horn \\ fur & Spurious \ Correlation: \\ \vdots \\ \vdots \\ \vdots \\ size \\ color \\ \vdots \\ \vdots \\ \vdots \\ size \\ color \\ \vdots \\ \vdots \\ \end{cases}$$

Too many learned features? (Feature squeezing, Feature selection, \cdots)

How to separate causal correlation from spurious correlation?

Or in the language of NN, how to separate causal features from spurious features?

Zhe Wang Invariant Risk Minimization 2019-9-13 4/20

201909

6 / 24

Zhe Wang

Invariant & Casual²

Intuitively,

Causal ⇐⇒ Invariant.

- Causal reasons will always lead to the specific results, regardless of perturbation or intervention.
- If some features always accompany a phenomenon in various environments, it is reasonable to conclude they are causal features.

Zhe Wang Invariant Risk Minimization 2019-9-13 5/20

²Invariance, Causality and Robustness, Peter Bühlmann

Formally,

Definition (Invariant)

A subset $S^* \subset \{1, \dots, p\}$ of variable indices, s.t. $P(Y^e|X^e_{S^*})$ remains same for all environments.

Specifically, in a linear model: $\exists S^* \subset \{1, 2, \dots, n\}$, which is the support of β , s.t.

$$Y^e = X^e \beta_{s^*} + \epsilon^e \tag{3}$$

8 / 24

where $\epsilon^e \sim F^{\epsilon}$, F^{ϵ} is same for all environments.

We really care about this S^* , it is related to robustness and generalization ability.

Zhe Wang Invariant Risk Minimization 2019-9-13 6/20

Definition (SEMs)

$$Y \leftarrow f_Y(X_{pa(Y)}, \epsilon_Y), \quad X_j \leftarrow f_j(X_{pa(X_j)}, \epsilon_j),$$
 (4)

where ϵ_Y , $\{\epsilon_j\}$ are all independent. pa(Y), parent nodes for Y, are causal variables for Y.

Q: Under what kind of environments can we find some interesting invariant sets?

A: There are some basic assumptions:

• X and Y satisfies SEM

Zhe Wang

- perturbation doesn't perform on Y directly
- perturbation doesn't change the function f_Y

201909

9 / 24

With the aforementioned assumptions, causal (parent) variables lead to invariance (Haavelmo, 1943).

causal variables --- invariant set

Reverse relation? quietly recently.

$$\hat{S} = \bigcap_{S} \{S : \text{S passes hypothesis test of invariant with significant level } \alpha \},$$

$$+ \tag{5}$$

Gaussian Noise,

then,
$$P(\hat{S} \subset Causal(Y)) \ge 1 - \alpha$$
.

Invariant set ---- causal variables

 Zhe Wang
 Invariant Risk Minimization
 2019-9-13
 8/20

 (UVA)
 Zhe Wang
 201909
 10 / 24

Why do we need causal correlations?

Causal correlations ⇒ Generalization ability (or to say test sets, adversarial samples in NN)

How to learn causal correlations?

Zhe Wang

Invariant ⇒ Causal Correlations (Explore those invariant features on training environments)

How are they related to generalization ability (robustness)?

For linear SEM:

$$\arg\min_{\beta} \max_{e} \mathbf{E}||Y^{e} - X^{e}\beta||^{2} = \beta_{S(Y)}$$
 (6)

Worst case solver, robust to adversarial distributions.

Example: Regression Problem

Predict *Y* from $\Phi(X)$, loss function : $E||Y^e - f(\Phi(X^e))||_F^2$:

The optimal solution: $f^*(x) = \int_e yp(y|\Phi(x))dy$

If $E_{e_i}(y|\Phi(x)=h)=E_{e_j}(y|\Phi(x)=h)$, then $\Phi(x)$ elicits an invariant predictor.

(UVA) Zhe Wang 201909 12 / 24

Shared goal in various tasks:

$$\min_{f} R^{OOD}(f) = \min_{f} \max_{e \in \mathcal{E}_{all}} R^{e}(f), \tag{7}$$

where $R^e(f) = \mathbb{E}_{X^e, Y^e}[l(f(X^e), Y^e)].$

Invariant Risk Minimization

2019-9-13

Method: IRM

a learning paradigm to extract nonlinear invariant predictors across multiple environments, enabling OOD generalization.

Definition:

Zhe Wang

a data representation $\Phi: \mathcal{X} \to \mathcal{H}$ elicits an invariant predictor $w \circ \Phi$ across environments \mathcal{E} if there is a classifier $w: \mathcal{H} \to \mathcal{Y}: w \in \arg\min_{\bar{w}: \mathcal{H} \to \mathcal{V}} R^e(\bar{w} \circ \Phi)$

14 / 24

201909

- *Y* can be totally determined by $w \circ \Phi(X)$ under all environments.
- w is optimal for all environments.

Loss components:

•
$$\arg\min_{\Phi:\mathcal{X}\to\mathcal{H}w:\mathcal{H}\to\mathcal{Y}}\sum_{e\in\mathcal{E}_{tr}}R^{e}(w\circ\Phi),$$

• s.t. $w \in \arg\min_{\bar{w}: \mathcal{H} \to \mathcal{V}} R^e(\bar{w} \circ \Phi)$ for all $e \in \mathcal{E}_{tr}$.

Mathematically,

$$Y \perp \!\!\! \perp E \mid \Phi(X) = X_1, W \tag{8}$$

While most machine learning is based on:

$$Y \perp \!\!\! \perp E \mid (X_1, X_2), W \tag{9}$$

201909

Via Lagrange method:

$$L_{IRM}(\Phi, w) = \sum_{e \in \mathcal{E}_{Ir}} R^{e}(w \circ \Phi) + \lambda D(w, \Phi, e)$$
(10)

By the normal equation:

$$w_{\Phi}^{e} = \mathbb{E}_{X^{e}} [\Phi(X^{e})' \Phi(X^{e})]^{-1} \mathbb{E}_{X^{e}, Y^{e}} [\Phi(X^{e})' Y^{e}]$$
(11)

- $D(w, \Phi, e) = ||w w_{\Phi}^e||^2$. Containing the inverse, can be discontinuous.
- $D(w, \Phi, e) = ||\mathbb{E}_{X^e}[\Phi(X^e)'\Phi(X^e)]w \mathbb{E}_{X^e, Y^e}[\Phi(X^e)'Y^e]||^2$. Smooth and differentiable.

Over-parametrized:

Fix the "dummy" linear classifier $\tilde{w} = 1.0$

In general cases:

$$\min_{\Phi: \mathcal{X} \to \mathcal{Y}} \sum_{e \in \mathcal{E}_{tr}} R^{e}(\Phi) + \lambda ||\nabla_{w|w=1.0} R^{e}(w \cdot \Phi)||^{2}.$$
(12)

Implement details:

For the square of gradient norm, a unbiased estimation is

$$\sum_{k=1}^{b} \left[\nabla_{w|w=1.0} l(w \cdot \Phi(X_k^{e,i}), Y_k^{e,i}) \cdot \nabla_{w|w=1.0} l(w \cdot \Phi(X_k^{e,j}), Y_k^{e,j}) \right], \tag{13}$$

where, $X^{e,i}$ and $X^{e,j}$ are two random batches sampled from environment e.

Example: Regression Problem

Predict *Y* from $\Phi(X)$, loss function : $E||Y^e - f(\Phi(X^e))||_F^2$:

The optimal solution: $f^*(x) = \int_{e} yp(y|\Phi(x))dy$

If $E_{e_i}(y|\Phi(x)=h)=E_{e_j}(y|\Phi(x)=h)$, then $\Phi(x)$ elicits an invariant predictor.

(UVA) Zhe Wang 201909 18 / 24

Example: Regression Problem

Predict *Y* from $\Phi(X)$, loss function : $E||Y^e - f(\Phi(X^e))||_F^2$:

The optimal solution: $f^*(x) = \int_e yp(y|\Phi(x))dy$

If $E_{e_i}(y|\Phi(x)=h)=E_{e_j}(y|\Phi(x)=h)$, then $\Phi(x)$ elicits an invariant predictor.

(UVA) Zhe Wang 201909 19 / 24

low error + invariance across \mathcal{E}_{tr} = low error + invariance across \mathcal{E}_{all} ??

Assumption: all environments share the same underlying Structural Equations.

Definition

A SEM $\mathcal{C} := (\mathcal{S}, \mathcal{N})$ governing the random vector $X = (X_1, X_2, \cdots, X_d)$ is a set of structural equations:

$$S_i: X_i \leftarrow f_i(Pa(X_i), N_i) \tag{14}$$

Acyclic causal graph.

An intervention e on C consists of replacing some of its structural equations via manipulating the noise variable N_i

An intervention $e \in \mathcal{E}_{all}(\mathcal{C})$ is considered to be valid: the causal graph remains acyclic, $\mathbf{E}[Y^e \mid Pa(Y)] = \mathbf{E}[Y \mid Pa(Y)], \mathbf{V}[Y^e \mid Pa(Y)]$ remains finite.

Zhe Wang Invariant Risk Minimization 2019-9-13 16/20

(UVA) Zhe Wang 201909 20 / 24

Generalization

Require some degree of diversity across \mathcal{E}_{tr}

- Diversity + invariant across \mathcal{E}_{tr} = invariant across \mathcal{E}_{all} . Basically, these environments span a high dimensional space. (These environments can't be co-linear).
- Low error across \mathcal{E}_{tr} + invariant across \mathcal{E}_{all} = low error across \mathcal{E}_{all}

21 / 24

Zhe Wang

Invariant Rick Minimization

Experiments on MNIST

- digits $0 \sim 4$ is assigned with label y = 0, others with label y = 1.
- flip the label with 25% probability.
- color the image.

Zhe Wang

 flip the color with a probability depends on environment 10%, 20% for train and 90% for test.

Invariant Risk Minimization 2019-9-13 18/20

Algorithm	Acc. train envs.	Acc. test env.
ERM	86.57	14.56
IRM (ours)	70.93	66.10
Random guessing (hypothetical)	50	50
Optimal invariant model (hypothetical)	75	75
ERM, grayscale model (oracle)	73.52	72.90

Table 1: Accuracy (%) of different algorithms on the Colored MNIST synthetic task.

 Zhe Wang
 Invariant Risk Minimization
 2019-9-13
 19/20

 (UVA)
 Zhe Wang
 201909
 23/24

Relation to domain adaptation

Domain Adaptation, especially for adversarial DA.

- $Y \perp \!\!\! \perp E \mid\mid \Phi(X)$
- $w \in \arg\min_{\bar{w} \in \mathcal{H} \to \mathcal{Y}} R^s(w \cdot f)$

Learn wrong kinds of invariant correlations.