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Invariant Risk Minimization'

Unreasonable but widely-used assumptions: all training data and test data are i.i.d.

training examples
D: Xy, 01).- - (Xn, Yn

ERM principle:

ERM = Eran 1[g(x), ¥] M

"Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, David Lopez-Paz
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In real life? No!
Joint data distribution:

P(X,Y) = P(YIX)P(X) (2)

Both components vary w.r.t different environments e.

Why?

correlations = spurious correlation + causal correlation.
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X: Image, Y: {Lamb, Cow}

horn size

Causal correlation : { fur Spurious Correlation : < color

Too many learned features? (Feature squeezing, Feature selection, - - - )
How to separate causal correlation from spurious correlation?

Or in the language of NN, how to separate causal features from spurious features?
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. 2
Invariant & Casual *

Intuitively,

Causal <= Invariant.

@ Causal reasons will always lead to the specific results,
regardless of perturbation or intervention.
o If some features always accompany a phenomenon in various environments,

it is reasonable to conclude they are causal features.

2Invariam:e, Causality and Robustness, Peter Bithlmann
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Formally,

Definition (Invariant)

A subset S* C {I,---,p} of variable indices, s.t. P(¥°|X§- ) remains same for all environments.

Specifically, in a linear model: 35™ C {1,2,--- ,n}, which is the support of 3, s.t.
V' =XB+¢ 3)

where € ~ F°, F© is same for all environments.

[Fur] [size] [cotor] ]

N/

§* = {l, 2}

We really care about this S, it is related to robustness and generalization ability.
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Definition (SEMs)

Y&fy()ﬁ’,,,,(y),€y), )‘; 4_];“(‘X:pcr(,\?)sfj)v (4)

where ey, {¢;} are all independent. pa(Y), parent nodes for Y, are causal variables for Y.

Q: Under what kind of environments can we find some interesting invariant sets?
A: There are some basic assumptions:

@ Xand Y satisfies SEM

@ perturbation doesn’t perform on Y directly

@ perturbation doesn’t change the function fy
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With the aforementioned assumptions, causal (parent) variables lead to invariance (Haavelmo,
1943).

causal variables — invariant set

Reverse relation? quietly recently.

§=("){S: S passes hypothesis test of invariant with significant level o/},

s
* (5)
Gaussian Noise,
then, P(8 C Causal(¥)) > 1 — a.

Invariant set — causal variables

ETPRREE?
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Why do we need causal correlations?

Causal correlations = Generalization ability (or to say test sets, adversarial samples in NN)

How to learn causal correlations?

Invariant = Causal Correlations (Explore those invariant features on training environments)

How are they related to generalization ability (robustness) ?

For linear SEM:
argn}ainmfxEHYe —X°8* = Bsiny (6)

Worst case solver, robust to adversarial distributions.
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Example: Regression Problem

Predict Y from ®(X), loss function : E||Y* — f{®(X*))] |7
The optimal solution: f*(x) = [, yp(y|®(x))dy

If E,(y|®(x) = h) = E; (v|®(x) = h), then ®(x) elicits an invariant predictor.
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Shared goal in various tasks:
min R°?(f) = min max R(f), 7
/ [ e€&u

where R°(f) = Exe ye[[(/{X%), Y°)].
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Method: IRM

a learning paradigm to extract nonlinear invariant predictors across multiple environments, en-
abling OOD generalization.

Definition:

a data representation ¢ : X' — H elicits an invariant predictor w o ® across environments & if

there is a classifierw : H — ) : w € arg min_R°(Wwo @)
wH—=Y

/N

o—0—©0
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@ Y can be totally determined by w o ®(X) under all environments.

@ w is optimal for all environments.

Loss components:

> R(we ®),

@ arg min
P:XHwH—=Y eCEy

o st.w€arg min_ R°(wo ®)forall e € &,.
wH—=Y
Mathematically,
YLE|®X) =X, W ®
While most machine learning is based on:

YLE|(X,X), W ©)]
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Via Lagrange method:

Lpw(®,w) = > R'(wo @) + AD(w, ©,e) (10)
e€Ey
By the normal equation:
Wy = By [@(X) O(X)] ™ Exe e [®(X) Y] (11

o D(w, @, e) = ||w— w%||*. Containing the inverse, can be discontinuous.

o D(w, D, e) = ||[Ex [®(X) D(X)]w — Exe ye [B(X*)'¥]||%. Smooth and differentiable.

Over-parametrized:

Fix the "dummy” linear classifier w = 1.0
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In general cases:
. . e 2
S0 D R(®) + N[ Vopumr oR (v - @))% (12)
eEEy
Implement details:

For the square of gradient norm, a unbiased estimation is
b
D Vol S, ) - Vourollw - 2(X7), 1)), (13)
k=1

where, X" and X*V are two random batches sampled from environment e.
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Example: Regression Problem

Predict Y from ®(X), loss function : E||Y* — f{®(X*))] |7
The optimal solution: f*(x) = [, yp(y|®(x))dy

If E,(y|®(x) = h) = E; (v|®(x) = h), then ®(x) elicits an invariant predictor.
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low error + invariance across &, = low error + invariance across &,; ??

Assumption: all environments share the same underlying Structural Equations.

Definition

A SEM C := (8, N) governing the random vector X = (X, Xz, --- ,X;) is a set of structural
equations:

S : Xi < fi(Pa(Xi), Ni) (14)

Acyclic causal graph.

An intervention e on C consists of replacing some of its structural equations via manipulating the
noise variable N;
An intervention e € &,(C) is considered to be valid: the causal graph remains acyclic, E[Y* |

Pa(Y)] = E[Y | Pa(Y)], V[Y* | Pa(Y)] remains finite.
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Generalization

Require some degree of diversity across &,

@ Diversity + invariant across &, = invariant across &,;,. Basically, these environments span a

high dimensional space. (These environments can’t be co-linear).

o Low error across &, + invariant across &,; = low error across &,
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Experiments on MNIST

digits 0 ~ 4 is assigned with label y = 0, others with label y = 1.

flip the label with 25% probability.

@ color the image.
e flip the color with a probability depends on environment 10%, 20% for train and 90% for
test.
2019013 18/20
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Algorithm Acc. train envs. Acc. test env.
ERM 86.57 14.56
IRM (ours) 70.93 66.10
Random guessing (hypothetical) 50 50
Optimal invariant model (hypothetical) 7 75
ERM, grayscale model (oracle) 73.52 72.90

Table 1: Accuracy (%) of different algorithms on the Colored MNIST synthetic task.
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Relation to domain adaptation
Domain Adaptation, especially for adversarial DA.
o—0—0
o YL E| ®X)

® wE arg Tr;ltigyR‘(w -f)

Learn wrong kinds of invariant correlations.
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