Model-Free Value Methods in Deep RL

Presenter: Jake Grigsby

University of Virginia
https://qdata.github.io/deep2Read/

202008

Presenter: Jake Grigsby (University of Virgini 202008 1/35

https://qdata.github.io/deep2Read/
https://qdata.github.io/deep2Read/

A Markov Decision Process (MDP) consists of:
o S, a set of states
o A, a set of actions
o R CR, a set of rewards
@ a dynamics function p : SxXRxSxA — [0, 1]

p(s',r|s,a) = Pr{S; =s', Ry = r|S;_1 = 5,A;_1 = a}

It's common to break the dynamics function p up into a Transition
Function T(s,a,s’) = Z p(s’, r|s,a), and a Reward Function
rer

R(s,a) = Z r Z p(s',r|s, a)

reR s'eS

202008

2/35

https://qdata.github.io/deep2Read/

The goal of RL agents is to find a policy! 7 : S — A that maximizes the
expected discounted return

t=o00
7 = argmax E E vR;
s T~ —0

where v € [0, 1) is the discount factor that lets us deal with non-episodic
tasks and 7 is a trajectory (a sequence of states and actions that describe
the agent’s experience)

!Policies can also be stochastic, in which case they're written 7(a|s) : Sx.A — [0,1]
202008 3/35

https://qdata.github.io/deep2Read/

We begin by making some assumptions about the task we are trying to
solve:

Q The dynamics of the model (p(s’, r|s, a)) are known
Q S|« x
0 Al <«

202008 4/35

https://qdata.github.io/deep2Read/

Simplifying Assumptions

Example: Gridworlds

Presenter: Jake Grigsby (University of Virgini 202008 5/35

https://qdata.github.io/deep2Read/

Generalized Policy lteration

Solution: Policy Iteration Dynamic Programming

L]
-

P

We'll skip these details because knowledge of dynamics is such a limiting
assumption in our case. More info can be found in [9]

202008 6/35

https://qdata.github.io/deep2Read/

Q Fhe-dynramies-of-themede{p{s+risrapareknown
Q |S| <«
Q0 A«

What if the environment dynamics are unknown?

202008 7/35

https://qdata.github.io/deep2Read/

Value methods attempt to learn the optimal @ Function

k=00

Q*(s,a) = maxE Z ’Yth+k+1 | St =5,Ar =2
" 7 lk=o

Why? Because given Q*(s, a), the optimal policy can easily? be computed
by

7w (s) = argmax Q*(s, a)

2Well at least for now. The max operation is going to be a problem later...
202008 8/35

https://qdata.github.io/deep2Read/

o Play out entire episodes and keep track of the average return we
experience from every (s, a) pair.
o Pros
Easy to implement

o Cons
Learning can only happen at the end of each episode. What if episodes
are long (or never end)?

202008 9/35

https://qdata.github.io/deep2Read/

Value Methods: Monte Carlo

Initialize, for all s € S, a € A(s):
Q(s,a) «— arbitrary
m(s) «— arbitrary
Returns(s, a) < empty list

Fixed point is optimal
policy 7*

Proof is open question

Repeat forever:
(a) Generate an episode using exploring starts and 7
(b) For each pair s,a appearing in the episode:
R «— return following the first occurrence of s, a
Append R to Returns(s,a)
Q(s,a) — average(Returns(s,a))
(c) For each s in the episode:
m(s) « arg max, Q(s,a)

Figure: Monte Carlo Action Value Control [9]

Presenter: Jake Grigsby (University of Virgini 202008 10 /35

https://qdata.github.io/deep2Read/

o At each time step, the agent must choose between "exploiting” the
action it currently thinks has the best return and "exploring”
alternatives to learn more about them.

o Most convergence guarantees assume state coverage

Every state will be visited an infinite number of times in an infinite
number of timesteps.
This can be acheived by enforcing:

m(als) >0,Vs € S

202008 11/35

https://qdata.github.io/deep2Read/

@ The simplest way to do this is to make an existing policy e-greedy:

/() = m(s) with probability (1 — €);
TS = Trandom(S) with probability ¢;

202008 12/35

https://qdata.github.io/deep2Read/

@ The simplest way to do this is to make an existing policy e-greedy:

/(s) m(s) with probability (1 — €);
S) =
" Trandom(S) with probability ¢;

o This can be thought of as injecting noise into the action space

o All of the agent’s we'll be talking about use this general approach,
but there is a lot of interesting work on motivating agents to explore
efficiently. [5] [11]

202008 12/35

https://qdata.github.io/deep2Read/

o Randomly initialize Q(s, a) and use interactions with the environment
as a sample to update this 'bootstrap’

o Updates based on the Bellman Equation:

Q7(s,a) =E |r(s,a)+v E [Q(s,)]

s’ a’~m

202008 13/35

https://qdata.github.io/deep2Read/

(4]

©

Randomly initialize Q(s, a) and use interactions with the environment
as a sample to update this 'bootstrap’

Updates based on the Bellman Equation:

Q7(s,a) =E |r(s,a)+v E [Q(s,)]

s’ a’~m

Pros
Online learning, no need to wait for the end of an episode.
Cons

Generally less stable when used with function approximation methods
(more on this soon...)

202008 13/35

https://qdata.github.io/deep2Read/

Q-learning (off-policy TD control) for estimating 7 = .,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8, a € .A(s), arbitrarily except that Q(terminal,) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., z-greedy)
Take action A, observe R, S’
Q(S, A) < Q(S, A) + a[R + ymax, Q(5',a) — Q(S, A)]
S+ 5
until S is terminal

Q-Learning Pseudo-code [9]

202008 14 /35

https://qdata.github.io/deep2Read/

Q Fhe-dynramies-of-themede{p{s+risrapareknown
Q [St=<—»e
Q0 A«
What if the state space is too large for dynamic programming?

202008 15/35

https://qdata.github.io/deep2Read/

Example: Video Games

o Pixel input makes |S| = ZHWXC

o Atari 2600 games make up one of the most popular benchmarks in
modern RL.

Games in the Arcade Learning Environment [1] benchmark

202008 16 /35

https://qdata.github.io/deep2Read/

o Paramaterize Q with a neural network that can learn to recognize
patterns between similar states.

o Train this network to minimize the Mean Squared Bellman Error
(MSBE)

BE(57 a,r, 5/7 d) = (r + /Y(]' - d) m‘:;'X Q@’(Slv al)) - C?9(57 a)

202008

17/35

https://qdata.github.io/deep2Read/

Paramaterize Q with a neural network that can learn to recognize

patterns between similar states.
Train this network to minimize the Mean Squared Bellman Error

(MSBE)
BE(57 a,r, 5/7 d) = (r + /Y(]' - d) m‘:;'X Q@’(Slv al)) - C?9(57 a)

o Kind of like supervised deep learning!

One important difference:
The data distribution depends on the parameters (far from i.i.d)

202008 17 /35

https://qdata.github.io/deep2Read/

DQNs [3] use a couple tricks to make this more like supervised learning:

O Create a replay buffer R to store transitions (s, a, r,s’, d)

Randomly sample from this buffer at each training step.

Q Create a target network to generate the the bellman error targets.
This is a duplicate of the original network that is not trained but is
updated with fresh params every ~ 10000 steps.

The original DQN was able to learn superhuman policies on many games
with dense reward signals!

202008 18 /35

https://qdata.github.io/deep2Read/

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 6
Initialize target action-value function 0 with weights 0 =0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1T do
With probability ¢ select a random action a,
otherwise select a, =argmax, Q(¢(s;),a; 0)
Execute action ¢, in emulator and observe reward r, and image x; | |
Set s, =5,4:,% 1 and preprocess ¢, ; =¢(s; 1)
Store transition (¢,,a;,ri,¢,41) in D
Sample random minibatch of transitions (dzj,aj,g,qﬁj +1) from D

7 if episode terminates at step j+1
Sety;= > ' a— .
7+ y maxy Q(;b”l,a N) otherwise
2
Perform a gradient descent step on (yj - Q(tﬁj,a}-; 9)) with respect to the
network parameters ¢
Every C steps reset Q=0

End For
End For

8]

202008

19/35

https://qdata.github.io/deep2Read/

Simplifying Assumptions

Presenter: Jake Grigsby (University of Virgini 202008 20/35

https://qdata.github.io/deep2Read/

MDPs where the actions are vectors (e.g. torque on a robot's motors,

acceleration of a car, degrees to turn...)
am
- \
1’/\ L |
p.

Example MuJoCo control task Simulated robotics task

202008 21/35

https://qdata.github.io/deep2Read/

Q: Why won't DQN work?
A: It's too difficult to compute the Bellman Error, because we can’'t max
over such a large set of actions

BE(s,a,r,s',d) = (r + (1 — d) max Qu(s’,a")) — Qu(s, a)

202008 22/35

https://qdata.github.io/deep2Read/

"Deep Q Learning for Continuous Action Spaces” [2]
o DDPG is an Actor-Critic method

Actor network pig(s)
Critic network Q4(s, a)

o We can get around the max operation issue by having the network
learn this for us:

po(s) = argmax Qu(s, a)
a
o How do we train this?

At each step, we optimize the critic network based on standard MSBE,
and we optimize the actor network with gradient ascent using

1
Voig| > Quls. 1o(s))

seB

202008 23 /35

https://qdata.github.io/deep2Read/

Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 Deep Deterministic Policy Gradient

1: Input: initial policy parameters 6, Q-function parameters ¢, empty replay buffer D

2: Set target parameters equal to main parameters Gaeg <= 6, Grarg < ¢

3: repeat

4: Observe state s and select action a = elip(11(s) + €, ALow, @prign), Where € ~ N

5. Execute a in the environment

6: Observe next state s', reward r, and done signal d to indicate whether s’ is terminal
7: Store (s,a,r, s, d) in replay buffer D
8
9

If ' is terminal, reset environment state
. if it’s time to update then
10: for however many updates do

11: Randomly sample a batch of transitions, B = {(s, a,r,s",d)} from D
12: Compute targets

y(r,8'd) = 1+ Y (1 = d) Qs (8 100 (87)
13: Update Q-function by one step of gradient descent using
1
V¢E > (Qlsa) =yl s D)’
(sars d)eB

14: Update policy by one step of gradient ascent using
1
Vﬂ@ > Quls. pals)
sEB

15: Update target networks with
Brarg Phrag + (1 — p)o
Brarg < pliarg + (1 — p)0
16: end for

17: end if
18: until convergence

Figure: DDPG Pseudocode [4]

Presen Jake Grigsby (University of Virgini 202008 24 /35

https://qdata.github.io/deep2Read/

o Actor-critic methods suffer from overestimation bias
Actor network learns to exploit inaccuracies in the approximation of the
Q function
o Three ticks help reduce this effect:
O Delayed Policy Updates
Update the critic more often than the actor

©Q Smoothing the Q function by adding noise to the target actions

por(s') = pg(s') + €,e ~ N(0,0)

Force the bellman targets to be the same in the neighborhood of each
action.

© "Clipped Double-Q Learning”

Train two critics and use the smallest of the two Q values.
Explicitly prefer underestimates of the Q function to overestimates.

202008 25/35

https://qdata.github.io/deep2Read/

Twin Delayed DDPG (TD3)

Algorithm 1 Twin Delayed DDPG
1= Input: initial policy parameters #, Q-function parameters i, ¢, empty replay buffer D
2: Set target parameters equal to main parameters Oy, 8, Guarg1 — G1, Graga — 2
3 repeat
: Observe state s and select action a = clip(#a(s) + € @ou, armigh), where € ~ A’

4
5 Execute a in the environment

6 Observe next state s', reward #, and done signal d to indicate whether 5" is terminal
7: Store (s,a,r, s, d) in replay buffer D

8 If & is terminal, reset environment state.

9:if it’s time to update then

10: for j in range(however many updates) do
11 Randomly sample a batch of transitions, B = {(s,a,r, s’ d)} from D
12: Compute target actions

() = elp (st () + cliple, ¢, 0), Gz tpign) . €~ N(0,0)
13 Compute targets

s, d'(s"))

ylr, s d) = 7+ 5(1 = d) min Qs

14 Update Q-functions by one step of gradient descent using
Vo X (Qulsa)—yirs A fori=1,2
181 (s d)EB
15: if j mod pelicy delay =0 then
16 Update policy by ene step of gradient ascent using

1
wﬁgm@mm

170 Update target networks with
Prorgi 4 PPrarg + (1= p)y fori=1,2
Otarg ¢ Plhong + (1= p)0
18: end if
19: end for
20. end if

21 until convergence

Jake Grigsby iversity of Virgini 202008 26 /35

https://qdata.github.io/deep2Read/

Twin Delayed DDPG (TD3)

= TD3

=

= TRPO = ACKTR = sAC

4000
3000
2000
1000,

55“55”%

08 0.0 0z 04 06 08 1.0 0.0 02 04 08 08 10 0.0 0.2 04 0.6 08 10
Tm. stops. n-s) Time steps (1e6) Time steps (1e6) Time steps (1e6)
(a) HalfCheetah-v1 (b) Hopper-v1 (c) Walker2d-v1 (d) Ant-v1

1000] 10000

€ 300 8000

i 800) 6000
700)

é’ 4000
1 600

< 500 2000

400 o

04 06 K 00 02 04 08 08 10 0.0 0.2 04 06 08 1.0
Time steps {1e6) Time steps (166} Time steps {1e6)
(e) Reacher-v1 (f) InvertedPenduls 1 (2 dDoubl duls 1

Figure 5. Learning curves for the OpenAl gym continuous control tasks. The shaded region represents half a standard deviation of the
average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.

Figure: [6]

Presenter: Jake Grigsby (University of Virgini 202008 27/35

https://qdata.github.io/deep2Read/

o Like many other areas of Deep Learning, Model-Free Deep RL benefits
from more computation, large training sets and high quality data.
o In RL, we can't make the training set larger, but we can collect more

experience
o Distributed methods run multiple actor agents in parallel, and store
the transitions in a distributed replay buffer. A learner samples from

the buffer to improve its parameters.

30

ACTORS

REPLAY BUFFER

LEARNER
Minimiso RL + inteinsic:
‘motivation losses

202008 28/35

https://qdata.github.io/deep2Read/

Q Ape-X [7]
Distributed actors that feed to a central replay buffer. High
performance at the cost of sample efficiency.

202008 29/35

https://qdata.github.io/deep2Read/

Q Ape-X [7]
Distributed actors that feed to a central replay buffer. High
performance at the cost of sample efficiency.

© R2D2 [g]
Ape-X + RNN architecture that helps with partially observable tasks.

202008 29/35

https://qdata.github.io/deep2Read/

Q Ape-X [7]
Distributed actors that feed to a central replay buffer. High
performance at the cost of sample efficiency.

© R2D2 [g]
Ape-X + RNN architecture that helps with partially observable tasks.
© NGU [11]

R2D2 + a family of policies with different levels of intrinsic motivation
Great results on sparse reward games that are hardest to explore

202008 29/35

https://qdata.github.io/deep2Read/

Q Ape-X [7]
Distributed actors that feed to a central replay buffer. High
performance at the cost of sample efficiency.

© R2D2 [g]
Ape-X + RNN architecture that helps with partially observable tasks.
© NGU [11]

R2D2 + a family of policies with different levels of intrinsic motivation
Great results on sparse reward games that are hardest to explore

Q Agent57 [10]

NGU + a multiarmed bandit for policy hyperparameter selection.
Superhuman performance on all 57 ALE Games!

202008 29 /35

https://qdata.github.io/deep2Read/

Distributed DQNs

Atari-57 5th percentile performance

120 o

AVERAGE HUMAN
100
4
o
3 80
o
8
- 0
&
; -3
§ a0
E
=)
I
20
2015 206 2017 2018 2019 2020
Publication date

Single-actor agents Distributed agents

© oan @ rpex

O prioritised Dueling © ra2

©® rainbow @ nau

© csis © ruzers

O ror © ngents7

Presenter: Jake Grigsby (University of Virgini. Model-Free Value Methods in Deep RL 202008 30/35

https://qdata.github.io/deep2Read/

100

£
i
o
= 80
]
S
= 60
o
=
g
S
=]
= 40
o
(
E ---- Optimal
- 20 | —— Agent57
[|
% NGU + separate nets
« NGU + bandit + long trace
]
0 NGU
0 1 2 3 4 5
Number of frames lelo

Performance of Distributed DQN variants on the 10 most challenging Atari
games. Note the incredible 50B frames required to find the optimal policy![10]

202008 31/35

https://qdata.github.io/deep2Read/

Distributed DDPG

Manipulator (Bring Ball) Humanoid (Run)

Episode Return

Episode Retum
(Mean)

1 & 8 6
Training Time (Hours) Training Time (Hours)

Figure 3: Performance of Ape-X DPG on four continuous control tasks, as a function of wall clock time.
Performance improves as we increase the numbers of actors. The black dashed line indicates the maximum
performance reached by a standard DDPG baseline over 5 days of training.

Figure: Ape-X DPG [7]

Presenter: Jake Grigsby (University of Virgini 202008 32/35

https://qdata.github.io/deep2Read/

The best model-free methods require millions if not billions of environment
interactions to train. This creates several problems:

Q It would be difficult to apply them to problems where experience is
hard to come by (e.g. real-world robots)
Q They are incredibly expensive to train and experiment with
It would take at least 17 Trillion steps to do a full comparison sweep vs
Agent57 on the ALE. (5.7 Trillion per random seed...)
Each new training run takes roughly 17 days even on Google's
hardware.
© They are extremely complicated to implement, and are not all open
source.

202008 33/35

https://qdata.github.io/deep2Read/

) W W & =

“The arcade learning environment: An
evaluation platform for general agents”.

Continuous control with deep
reinforcement learning.

“Human-level control through deep
reinforcement learning” .
“Spinning Up in Deep Reinforcement Learning”.

“Large-scale study of curiosity-driven learning”.

“Addressing
function approximation error in actor-critic methods"”.

202008 34 /35

https://arxiv.org/abs/1509.02971
https://qdata.github.io/deep2Read/

& & W

“Distributed prioritized experience replay”.

“Recurrent experience replay in
distributed reinforcement learning”.

Reinforcement learning: An
introduction.

“Agent57: Outperforming the Atari
Human Benchmark”.

“Never Give Up: Learning Directed
Exploration Strategies”.

202008 35/35

https://qdata.github.io/deep2Read/

	Intro to Reinforcement Learning
	References

