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Sample Efficiency

While the usual goal of RL is to maximize the expected (discounted)

return J(πθ) = E
τ∼π

[ ∞∑
t=0

γtRτ,t

]
, sample efficient algorithms look to

achieve some threshold level of performance while taking as few steps in
the environment as possible
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Ideas for Sample Efficiency

1 Making the most of existing samples
I New network architectures
I Hindsight/counterfactual credit assignment
I Learning better representations of the environment
I Avoid overfitting to limited experience

2 Making more data
I Data Augmentation (see slides from two weeks agp)
I Creating new transitions by modeling the environment

F Model-based Reinforcement Learning
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Model-based Reinforcement Learning

Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

I Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [4]

I There is lots of work on model-based planning

We are going to focus mostly on ’Dyna’-style algorithms,
I where a model is used to generate additional training samples for an

otherwise model-free algorithm
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The general MBRL framework. When to use a model?

[4] discuss how replay-based
”models” create an upper
bound for performance

I Need to add planning to get a
true advantage

However, models that can
predict new transitions before
we put them in the replay can
increase sample efficiency...

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/ )Sample Efficient RL (Part 2) 202008 5 / 19

https://qdata.github.io/deep2Read/


Fitting the Model

Training the model is a relatively standard supervised learning problem

Given buffer D of experience
For batch {(s, a, r , s ′, d)} ∼ D:

Train with maximum-likelihood on predictions of (s ′, r , d), given (s, a)

There is lots of room to experiment here with advancements in time-series
modeling, especially in POMDPs...

The result is a model fθ(s, a) = (s ′, r , d)
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Model Performance Under a Shifting Policy
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Dyna Algorithms
Environment → Model → Model-free Agent

Dyna Q-Learning

For M iterations:
For N real env steps:

Use πb to collect (s, a, r , s ′, d)
Denv = Denv ∪ {(s, a, r , s ′, d)}
if |Denv | > C1, remove oldest transition

Fit model fθ using Denv

For K modeled env steps:
Use πb to collect (s, a, r , s ′, d)
Dmodel = Dmodel ∪ {(s, a, r , s ′, d)}
if |Dmodel | > C2, remove oldest transition

For G updates:
sample B samples ∼ Dmodel

compute TD targets ŷ using (r , s ′, d)
Q(s, a)← Q(s, a) + α [y − Q(s, a)]

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/ )Sample Efficient RL (Part 2) 202008 8 / 19

https://qdata.github.io/deep2Read/


Performance Bounds

How does performance in the modeled env correspond to the real one? [5]

Given real env MDP M, modeled MDP M̂, transition distributions TV
bound εm, policy divergence upper bound επ:

JM(π) ≥ JM̂(π)−
[

2γrmax(εm + 2επ)

(1− γ)2
+

4rmaxεπ
(1− γ)

]

This means that if it’s possible to improve performance by at least as
much as the right-most term, we can expect to improve in the actual env.
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Performance Bounds

branched rollouts are trajectories that start by rolling out a policy in
the real env, and then switch to using model-based transitions for k
steps

I If we started from the initial state dist, inaccurate models would be
useless at distant regions of the state space, due to compounding errors

I See [5] for a modified performance bound using this idea

To prevent against model exploitation, we train an ensemble of
models, and switch between them when generating trajectories

I This makes it difficult for the agent to reliably exploit inaccuracies in a
particular model
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Model Based Policy Optimization

One popular (recent) implementation of this idea: MBPO
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MBPO Results
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ME-TRPO
These ideas can also be extended to Policy Gradient methods, usually by
getting rid of the branched rollouts and instead estimating the env’s initial
state distribution. [3]

Increases risk of compounding errors
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ME-TRPO Results
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Modeling Complex Environments

Image-based POMDPS require more complicated models
I [1] study how to use large Convolutional RNN architectures to predict

the next frame directly.

A similar model was used in [6], with great sample efficiency results
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SimPLe
Use a sophisticated model architecture as part of a straightforward RL
procedure:

Essentially ME-PPO, with short rollouts to reduce compounding error. No
branching rollouts.
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SimPLe Results

Interestingly, this is not the SOTA on Atari 100k, after research on
Experience Replay I talked about last week led to much faster model-free
learning [4] (Data-Efficient Rainbow)
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Other Ways to Use the Model

Models can be used to generate rollouts for target generation (STEVE) [2]

Key idea: Use an ensemble of models and multiple lookahead paths to
reduce variance of the targets

This can be combined with standard Dyna ideas, although it’s had mixed
results so far...
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