Presenter: Jake Grigsby

University of Virginia
https://qdata.github.io/deep2Read/

202008

202008 1/29

https://qdata.github.io/deep2Read/
https://qdata.github.io/deep2Read/

While the usual goal of RL is to maximize the expected (discounted)

o
return J(mp) = E nytRTvt], sample efficient algorithms look to

T~
t=0
achieve some threshold level of performance while taking as few steps in
the environment as possible

202008 2/29

https://qdata.github.io/deep2Read/

Online policy gradient algorithms have two basic steps:
Q Policy Evaluation

Use the current policy my to collect trajectories of experience in the
environment

Q Policy Improvement

Use the experience collected to make some estimate of VyJ(7g), and
update 8 with SGD

202008 3/29

https://qdata.github.io/deep2Read/

The main problem is that the variance of the policy gradient VyJ(my), is
extremely high, requiring a large number of samples to estimate properly

[8]

° # Iteration: 0 3 # Iteration: 150] # Iteration: 300 = # Iteration: 450

jud ' e ! e 1 c !

o 10 TRPO o 10 TRPO o 10 TRPO o 10 TRPO

E] PPO] PPO k] PPO g PPO

= i = I = 1 = i

S os i £ os | £ os i £ os !

2 i = | 2 ! = |

E | £ | £ | £ I

@ 00 @ 00 [N @ 00 i

" v 0 w i

<1 <] o a

5% 5] o <

o i o | < o i

> -05 ¢ > -0s ! > -o0s > 05 i

< 107 10° 10t 10° 10° < 10? 10° 10t 10% 10° < 107 10° 10t 10° 10° < 107 10° 10t 10° 10¢
State-Action Pairs # State-Action Pairs # State-Action Pairs # State-Action Pairs

Convergence of the policy gradient in the Humanoid task

202008 4/29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

Iteration: 0

2 2 # Iteration: 150 ° # Iteration: 300 3 # Iteration: 450

I~ 1 ° 1 ° 1 I !

o 10 TRPO_—— © TRPO o 10 TRPO o 10 TRPO

g PPO g PPO g PPO g

5 | 5 | 5 | 5

S os / i S os i S os i 5 o0s

2 I 2 | 2 | g

£ i £ £ i £

@ o0 i @ oo i @ o0 i @ o0

» i 9 i 9 1 9

8 i 8 i 3 | 8

S f S f S i S

o i E i E i o

< w0 e X 100 100 100 w0 X 100 100 100 100 X1 100 100 100 10
State-Action Pairs # State-Action Pairs # State-Action Pairs # State-Action Pairs
Figure: Convergence of the policy gradient in the Walker task

2 # Iteration: 0 ° # Iteration: 150 ° # Iteration: 300 3 # Iteration: 450

5 10 p 5 10 TRRO S 10 TRPO 5 1o RO

]] PPO 7]] PPO

< o0s 5 S os < os

S S £ S

£ £ £ £

w00 w w00 N oo

a @ a @

8 8 3 8

S S S S

o i ° o o

S -os i s S -os S -os

< w0 w0 o e 0 100 e e X w0 w0 1 100 X0 100 100 100 106
State-Action Pairs # State-Action Pairs # State-Action Pairs # State-Action Pairs

Figure: Convergence of the policy gradient in the Hopper task

202008 5/29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

Another way to visualize this: we need a lot of data for the gradient step

to correlate with an actual increase in return [8]:

2,000 state-action pairs 20,000 state-action pairs

(~21 trajectories) (~235 trajectories)
500

(~1187 trajectories)
150
a60.

—

00 05

20 23 30 2o 23 30
00 10 18 oo 5
00 0% Gragentd

1
10 ection
00 05 gragert

Figure: Reward landscape for TRPO on Humanoid task

202008

100,000 state-action pairs

6/29

https://qdata.github.io/deep2Read/

In summary, on-policy policy gradients:

o Need thousands of interactions to really find out how to improve at
each step

o Have to throw away that experience after each update

The perfect storm for bad sample efficiency

We can improve by finding a way to reuse transitions several times

o off-policy

202008 7/29

https://qdata.github.io/deep2Read/

Q-learning fits the action-value function of the optimal policy

Q*(s,a) = R(s,a)+v E [max Q*(s',a)
simp(s/lsa) b 3

This means we can use any policy for experience collection, and we can
replay experience as many times as we want.

Experience Replay - at first used mostly to stabilize training - is a key part
of sample efficient algorithms.

202008 8/29

https://qdata.github.io/deep2Read/

Just for the sake of standardizing some notation:

Replay Q-Learning
For M iterations:
For K env steps:
Use 7}, to collect (s, a, r, s, d)
D=DU{(s,a,r,s',d)}
if [D| > C, remove oldest transition
For G updates:
sample B samples ~ D
compute TD targets y using (r,s’, d)
Q(s, a) < Q(s,a) + aly — Q(s, a)]

buffer capacity = C
replay ratio = %

age of oldest policy = %

202008

9/29

https://qdata.github.io/deep2Read/

Following the original DQN paper [2], there was a flood of new methods

to improve performance and sample efficiency:

Q Double DQN [1]
Reduce overestimation in update rule

Q Dueling DQN [4]
Model the value and advantage
instead of action-value

@ Prioritized Experience Replay [3]
Sample from buffer according to TD
error

Q (51 [5]
Learn the distribution of returns
instead of the expectation

@ Noisy Networks [6]

Control exploration with learned
parameters

Median human-normalized score

200% -

100%}-

DON

— DDQN

— Prioritized DDON

— Dueling DDQN
A3C
Distributional DQN

— Noisy DON
= Rainbow

Millions of frames

202008 10 /29

https://qdata.github.io/deep2Read/

@ Making the most of existing samples
New network architectures
Hindsight/counterfactual credit assignment
Learning better representations of the environment
Avoid overfitting to limited experience

202008 11/29

https://qdata.github.io/deep2Read/

How does replay impact learning?

There are two main parameters to investigate [11]:
O age of the oldest policy
> how long ago (in terms of policy updates) was the oldest experience in
the buffer collected?

Q buffer capacity

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000
7.906 2.500
0.791 0.250
0.079

25,000,000
QOldest 2,500,000
Policy 350,000
25,000

2500

7.906
2500 0.791
0.250 0.079

0.250

Figure: Performance of Rainbow on subset of Atari games with different replay
ratios. Green indicates improvement over baseline.

Presenter: Jake Grigsby (University of Virgini 202008 12 /29

https://qdata.github.io/deep2Read/

Two main conclusions:

Q Decreasing the age of the oldest policy (making learning closer to
on-policy) improves performance

Learning focuses on more recent, higher performance data.
Hard exploration games are a notable exception, where it seems more
important to cover a large portion of the state space.

Q Increasing the capacity of the replay buffer improves performance
Better state-space coverage

Note that both of these suggest a lower replay ratio (%)

ﬁu Age of Oldest Policy _ ﬁ Gradient Updates i} @ﬁ Replay Ratio

ﬁg Buffer Capacity - ﬁ@ Env Steps

202008 13 /29

https://qdata.github.io/deep2Read/

Low replay ratios:
Q Reduce the risk of overfitting
Q Increase the diversity of experience in the buffer

© Reduce sample efficiency

Some hope for improvement: taking lessons from distributed algorithms

202008 14 /29

https://qdata.github.io/deep2Read/

Distributed Reinforcement Learning

Distributed RL algorithms:

@ Sync experience across a large number of actors and update

parameters from a central server.

o Or sync gradients across a large number of learners.

Sampled experience

Learner Replay

Updated priorities
Network Experiences

Actor

Network Initial priorities
Network parameters

Generated experience

Environment

They are intended to maximize data throughput and wall-clock training

speed, with no concern for sample efficiency.

https://qdata.github.io/deep2Read/

Interestingly, they also perform significantly better than single-actor agents

[7]

450%

.
Ape-X DQN (120hrs)
400% °
Ape-X DQN (70hrs)

.
350% | Ape-X DQN (20hrs)

Rainbow

Human-normalized Score

<2 @ C51
Prioritized DQN

150%
100% .
Gorila
DQN
50%
0 50 100 150 200 250 300

Training Time (Hours)

What's going on here?
202008 16 /29

https://qdata.github.io/deep2Read/

As a byproduct of maximizing data
throughput, distributed algorithms:

Q Reduce the age of the oldest
policy in the replay buffer

Q Typically increase buffer
capacity
— They (significantly) decrease the
replay ratio

Does that explain the performance
increase?

o Early experiments suggest no...

Alien Beam Rider

24K
45K
18K
30K
12K
B AT
oK 15K W
0K 0K
SOK Demon Attack 390K Star Gunner
60K 240K
40K 160K
o M 0K e
0K 0K
0 15 30 45 60 0 15 30 45 60
Training Time (Hours) Training Time (Hours)
n =32 n =32 n = 256
k=1 k=4 k=1
n =32 n =32
k=2 k=8

Figure 6: Testing whether improved performance is
caused by recency alone: n denotes the number of
actors, & the number of times each transition is repli-
cated in the replay. The data in the run with n = 32,
k = 8 is therefore as recent as the data in the run with
n = 256, k = 1, but performance is not as good.

202008 17 /29

https://qdata.github.io/deep2Read/

What else may be going on?

Collecting this much parallel experience also:

o Increases the diversity of experience going into the buffer (in terms of
state space coverage)

Exploration is independent

o Decouples the agent from a particular timestep in a trajectory
Each env is likely on a different step count

Is there a way to take these ideas and apply them to single (or few)
actor agents that are sample efficient?

202008 18 /29

https://qdata.github.io/deep2Read/

@ Making the most of existing samples

New network architectures
Hindsight/counterfactual credit assignment
Learning better representations of the environment
Avoid overfitting to limited experience

Q Making more data

Data Augmentation (see last week)
Creating new transitions by modeling the environment

Model-based Reinforcement Learning

202008 19 /29

https://qdata.github.io/deep2Read/

o Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [9]
There is lots of work on model-based planning

202008 20/29

https://qdata.github.io/deep2Read/

o Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [9]
There is lots of work on model-based planning

o We are going to focus on 'Dyna’-style algorithms, where a model is
used to generate additional training samples for an otherwise
model-free algorithm

202008 20/29

https://qdata.github.io/deep2Read/

Training the model is a relatively standard supervised learning problem
Given buffer D of experience
For batch {(s,a,r,s’,d)} ~ D:

Train with maximum-likelihood on predictions of (s, r, d), given (s, a)

There is lots of room to experiment here with advancements in time-series
modeling, especially in POMDPs...

The result is a model fy(s,a) = (s, r, d)

202008 21/29

https://qdata.github.io/deep2Read/

Environment — Model — Model-free Agent

Dyna Q-Learning
For M iterations:
For N real env steps:
Use 7y, to collect (s, a, r, s, d)
Denv = Deny U{(s,a,r,5',d)}
if [Denv| > C1, remove oldest transition
Fit model fy using Depy,
For K modeled env steps:
Use 7}, to collect (s, a, r,s’, d)
Dmodel = Dmodel U {(57 a,r, 5/7 d)}
if |[Dmoder| > C2, remove oldest transition
For G updates:
sample B samples ~ D,,0der
compute TD targets y using (r,s’, d)
Q(Sv a) — Q(S7 a) + o [y - Q(S, a)]

202008

22/29

https://qdata.github.io/deep2Read/

How does performance in the modeled env correspond to the real one? [10]
Given real env MDP M, modeled MDP M transition distributions TV

bound €,,, policy divergence upper bound ¢,:

2’7rmax(€m + 267r) Armax€r
(1—7)? (1—7)

Im(m) > Jygy(m) —

This means that if it's possible to improve performance by at least as
much as the right-most term, we can expect to improve in the actual env.

202008 23/29

https://qdata.github.io/deep2Read/

o branched rollouts are trajectories that start by rolling out a policy in
the real env, and then switch to using model-based transitions for k
steps

If we started from the initial state dist, inaccurate models would be
useless at distant regions of the state space, due to compounding errors
See [10] for a modified performance bound using this idea

o To prevent against model exploitation, we train an ensemble of
models, and switch between them when generating trajectories

This makes it difficult for the agent to reliably exploit inaccuracies in a
particular model

202008 24/29

https://qdata.github.io/deep2Read/

One popular (recent) implementation of this idea: MBPO

Algorithm 2 Model-Based Policy Optimization with Deep Reinforcement Learning
1: Initialize policy 7y, predictive model pg, environment dataset Deny, model dataset Dioger
2: for N epochs do
3: Train model py on Deyy via maximum likelihood
4. for E steps do
5 Take action in environment according to m4; add t0 Deyy
6 for M model rollouts do
7. Sample s; uniformly from Deyy
8.
9

Perform k-step model rollout starting from s, using policy 7,4; add to Dpogel
for G gradient updates do

10: Update policy parameters on model data: ¢ < ¢ —)\,T@¢J,r(¢, Dinodel)

202008 25/29

https://qdata.github.io/deep2Read/

MBPO Results

InvertedPendulum Walker2d
6000 _ o _ _ _ _.
€ 900 € €]
=1 3 3
% g £ 4000)
o 600 9] 1] L
g g g
e e o
g 300 g g 2000
] ? 5
o] - 0 .
0 50k 100k 0 100k 200k 300k
steps steps
HalfCheetah Humanoid

15000 = = = = = - - -

E E £
= 3 3
2 v ©
@ @ @
o o o
o © o
L @ @
> > >
© o o

0 100k 200k 300k 0 200k 400k 0 100k 200k 300k

steps steps steps
— MBPO — SAC — PPO — PETS — STEVE — SLBO == convergence

er: Jake Grigsby

iversity of Virgini 202008 26 /29

https://qdata.github.io/deep2Read/

Next week:
o Modeling high dimensional observation spaces

Video prediction
Modeling in a compressed space (using AEs)

o Model-based online methods
o Offline RL

Extreme case where D, is fixed

o Hindsight Credit Assignment

202008

27 /29

https://qdata.github.io/deep2Read/

) W & &

Deep
Reinforcement Learning with Double Q-learning.

“Human-level control through deep
reinforcement learning”.

Prioritized Experience Replay.
Dueling Network Architectures for Deep
Reinforcement Learning.
A Distributional

Perspective on Reinforcement Learning.

Noisy Networks for Exploration.

202008 28/29

https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1706.10295
https://qdata.github.io/deep2Read/

“Distributed prioritized experience replay”.

A Closer Look at Deep Policy Gradients.

“When to
use parametric models in reinforcement learning?”

When to Trust Your Model: Model-Based

Policy Optimization.

Revisiting Fundamentals of Experience Replay.

202008 29/29

https://arxiv.org/abs/1811.02553
https://arxiv.org/abs/1906.08253
https://arxiv.org/abs/2007.06700
https://qdata.github.io/deep2Read/

	References

