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While the usual goal of RL is to maximize the expected (discounted)

o
return J(mp) = E nytRTvt], sample efficient algorithms look to

T~
t=0
achieve some threshold level of performance while taking as few steps in
the environment as possible
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Online policy gradient algorithms have two basic steps:
Q Policy Evaluation

Use the current policy my to collect trajectories of experience in the
environment

Q Policy Improvement

Use the experience collected to make some estimate of VyJ(7g), and
update 8 with SGD
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The main problem is that the variance of the policy gradient VyJ(my), is
extremely high, requiring a large number of samples to estimate properly

[8]
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Convergence of the policy gradient in the Humanoid task
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The problem with on-policy learning: policy gradients
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Figure: Convergence of the policy gradient in the Hopper task
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The problem with on-policy learning: policy gradients

Another way to visualize this: we need a lot of data for the gradient step

to correlate with an actual increase in return [8]:
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Figure: Reward landscape for TRPO on Humanoid task
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In summary, on-policy policy gradients:

o Need thousands of interactions to really find out how to improve at
each step

o Have to throw away that experience after each update

The perfect storm for bad sample efficiency

We can improve by finding a way to reuse transitions several times

o off-policy
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Q-learning fits the action-value function of the optimal policy

Q*(s,a) = R(s,a)+v E [max Q*(s',a)
simp(s/lsa) b 3

This means we can use any policy for experience collection, and we can
replay experience as many times as we want.

Experience Replay - at first used mostly to stabilize training - is a key part
of sample efficient algorithms.
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Just for the sake of standardizing some notation:

Replay Q-Learning
For M iterations:
For K env steps:
Use 7}, to collect (s, a, r, s, d)
D=DU{(s,a,r,s',d)}
if [D| > C, remove oldest transition
For G updates:
sample B samples ~ D
compute TD targets y using (r,s’, d)
Q(s, a) < Q(s,a) + aly — Q(s, a)]

buffer capacity = C
replay ratio = %

age of oldest policy = %
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Following the original DQN paper [2], there was a flood of new methods

to improve performance and sample efficiency:

Q Double DQN [1]
Reduce overestimation in update rule

Q Dueling DQN [4]
Model the value and advantage
instead of action-value

@ Prioritized Experience Replay [3]
Sample from buffer according to TD
error

Q (51 [5]
Learn the distribution of returns
instead of the expectation

@ Noisy Networks [6]

Control exploration with learned
parameters

Median human-normalized score
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Distributional DQN
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= Rainbow

Millions of frames
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@ Making the most of existing samples
New network architectures
Hindsight/counterfactual credit assignment
Learning better representations of the environment
Avoid overfitting to limited experience
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How does replay impact learning?

There are two main parameters to investigate [11]:
O age of the oldest policy
> how long ago (in terms of policy updates) was the oldest experience in
the buffer collected?

Q buffer capacity

Replay Capacity
100,000 316,228 1,000,000 3,162,278 10,000,000
7.906 2.500
0.791 0.250
0.079

25,000,000
QOldest 2,500,000
Policy 350,000
25,000

2500

7.906
2500 0.791
0.250 0.079

0.250

Figure: Performance of Rainbow on subset of Atari games with different replay
ratios. Green indicates improvement over baseline.
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Two main conclusions:

Q Decreasing the age of the oldest policy (making learning closer to
on-policy) improves performance

Learning focuses on more recent, higher performance data.
Hard exploration games are a notable exception, where it seems more
important to cover a large portion of the state space.

Q Increasing the capacity of the replay buffer improves performance
Better state-space coverage

Note that both of these suggest a lower replay ratio (%)

ﬁu Age of Oldest Policy _ ﬁ Gradient Updates i} @ﬁ Replay Ratio

ﬁg Buffer Capacity - ﬁ@ Env Steps
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Low replay ratios:
Q Reduce the risk of overfitting
Q Increase the diversity of experience in the buffer

© Reduce sample efficiency

Some hope for improvement: taking lessons from distributed algorithms
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Distributed Reinforcement Learning

Distributed RL algorithms:

@ Sync experience across a large number of actors and update

parameters from a central server.

o Or sync gradients across a large number of learners.

Sampled experience

Learner Replay

Updated priorities
Network Experiences

Actor

Network Initial priorities
Network parameters

Generated experience

Environment

They are intended to maximize data throughput and wall-clock training

speed, with no concern for sample efficiency.
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Interestingly, they also perform significantly better than single-actor agents

[7]
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What's going on here?
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As a byproduct of maximizing data
throughput, distributed algorithms:

Q Reduce the age of the oldest
policy in the replay buffer

Q Typically increase buffer
capacity
— They (significantly) decrease the
replay ratio

Does that explain the performance
increase?

o Early experiments suggest no...
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k=2 k=8

Figure 6: Testing whether improved performance is
caused by recency alone: n denotes the number of
actors, & the number of times each transition is repli-
cated in the replay. The data in the run with n = 32,
k = 8 is therefore as recent as the data in the run with
n = 256, k = 1, but performance is not as good.
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What else may be going on?

Collecting this much parallel experience also:

o Increases the diversity of experience going into the buffer (in terms of
state space coverage)

Exploration is independent

o Decouples the agent from a particular timestep in a trajectory
Each env is likely on a different step count

Is there a way to take these ideas and apply them to single (or few)
actor agents that are sample efficient?
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@ Making the most of existing samples

New network architectures
Hindsight/counterfactual credit assignment
Learning better representations of the environment
Avoid overfitting to limited experience

Q Making more data

Data Augmentation (see last week)
Creating new transitions by modeling the environment

Model-based Reinforcement Learning
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o Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [9]
There is lots of work on model-based planning
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o Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [9]
There is lots of work on model-based planning

o We are going to focus on 'Dyna’-style algorithms, where a model is
used to generate additional training samples for an otherwise
model-free algorithm
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Training the model is a relatively standard supervised learning problem
Given buffer D of experience
For batch {(s,a,r,s’,d)} ~ D:

Train with maximum-likelihood on predictions of (s, r, d), given (s, a)

There is lots of room to experiment here with advancements in time-series
modeling, especially in POMDPs...

The result is a model fy(s,a) = (s, r, d)
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Environment — Model — Model-free Agent

Dyna Q-Learning
For M iterations:
For N real env steps:
Use 7y, to collect (s, a, r, s, d)
Denv = Deny U{(s,a,r,5',d)}
if [Denv| > C1, remove oldest transition
Fit model fy using Depy,
For K modeled env steps:
Use 7}, to collect (s, a, r,s’, d)
Dmodel = Dmodel U {(57 a,r, 5/7 d)}
if |[Dmoder| > C2, remove oldest transition
For G updates:
sample B samples ~ D,,0der
compute TD targets y using (r,s’, d)
Q(Sv a) — Q(S7 a) + o [y - Q(S, a)]
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How does performance in the modeled env correspond to the real one? [10]
Given real env MDP M, modeled MDP M transition distributions TV

bound €,,, policy divergence upper bound ¢,:

2’7rmax(€m + 267r) Armax€r
(1—7)? (1—7)

Im(m) > Jygy(m) —

This means that if it's possible to improve performance by at least as
much as the right-most term, we can expect to improve in the actual env.
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o branched rollouts are trajectories that start by rolling out a policy in
the real env, and then switch to using model-based transitions for k
steps

If we started from the initial state dist, inaccurate models would be
useless at distant regions of the state space, due to compounding errors
See [10] for a modified performance bound using this idea

o To prevent against model exploitation, we train an ensemble of
models, and switch between them when generating trajectories

This makes it difficult for the agent to reliably exploit inaccuracies in a
particular model
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One popular (recent) implementation of this idea: MBPO

Algorithm 2 Model-Based Policy Optimization with Deep Reinforcement Learning
1: Initialize policy 7y, predictive model pg, environment dataset Deny, model dataset Dioger
2: for N epochs do
3:  Train model py on Deyy via maximum likelihood
4. for E steps do
5 Take action in environment according to m4; add t0 Deyy
6 for M model rollouts do
7. Sample s; uniformly from Deyy
8.
9

Perform k-step model rollout starting from s, using policy 7,4; add to Dpogel
for G gradient updates do

10: Update policy parameters on model data: ¢ < ¢ — )\,T@¢J,r(¢, Dinodel)
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MBPO Results
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Next week:
o Modeling high dimensional observation spaces

Video prediction
Modeling in a compressed space (using AEs)

o Model-based online methods
o Offline RL

Extreme case where D, is fixed

o Hindsight Credit Assignment
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Deep
Reinforcement Learning with Double Q-learning.

“Human-level control through deep
reinforcement learning”.

Prioritized Experience Replay.
Dueling Network Architectures for Deep
Reinforcement Learning.
A Distributional

Perspective on Reinforcement Learning.

Noisy Networks for Exploration.
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“Distributed prioritized experience replay”.

A Closer Look at Deep Policy Gradients.

“When to
use parametric models in reinforcement learning?”

When to Trust Your Model: Model-Based

Policy Optimization.

Revisiting Fundamentals of Experience Replay.
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