
Sample Efficient RL (Part 1)

Presenter: Jake Grigsby

University of Virginia
https://qdata.github.io/deep2Read/

202008

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 1 / 29

https://qdata.github.io/deep2Read/
https://qdata.github.io/deep2Read/

Sample Efficiency

While the usual goal of RL is to maximize the expected (discounted)

return J(πθ) = E
τ∼π

[∞∑
t=0

γtRτ,t

]
, sample efficient algorithms look to

achieve some threshold level of performance while taking as few steps in
the environment as possible

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 2 / 29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

Online policy gradient algorithms have two basic steps:
1 Policy Evaluation

I Use the current policy πθ to collect trajectories of experience in the
environment

2 Policy Improvement
I Use the experience collected to make some estimate of ∇θJ(πθ), and

update θ with SGD

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 3 / 29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

The main problem is that the variance of the policy gradient ∇θJ(πθ), is
extremely high, requiring a large number of samples to estimate properly
[8]

Figure: Convergence of the policy gradient in the Humanoid task

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 4 / 29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

Figure: Convergence of the policy gradient in the Walker task

Figure: Convergence of the policy gradient in the Hopper task

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 5 / 29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

Another way to visualize this: we need a lot of data for the gradient step
to correlate with an actual increase in return [8]:

Figure: Reward landscape for TRPO on Humanoid task

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 6 / 29

https://qdata.github.io/deep2Read/

The problem with on-policy learning: policy gradients

In summary, on-policy policy gradients:

Need thousands of interactions to really find out how to improve at
each step

Have to throw away that experience after each update

The perfect storm for bad sample efficiency

We can improve by finding a way to reuse transitions several times

off-policy

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 7 / 29

https://qdata.github.io/deep2Read/

Experience Replay and Q-Learning

Q-learning fits the action-value function of the optimal policy

Q∗(s, a) = R(s, a) + γ E
s′∼p(s′|s,a)

[
max
a

Q∗(s ′, a)
]

This means we can use any policy for experience collection, and we can
replay experience as many times as we want.

Experience Replay - at first used mostly to stabilize training - is a key part
of sample efficient algorithms.

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 8 / 29

https://qdata.github.io/deep2Read/

Very Brief Q-learning Review

Just for the sake of standardizing some notation:

Replay Q-Learning

For M iterations:
For K env steps:

Use πb to collect (s, a, r , s ′, d)
D = D ∪ {(s, a, r , s ′, d)}
if |D| > C, remove oldest transition

For G updates:
sample B samples ∼ D
compute TD targets ŷ using (r , s ′, d)
Q(s, a)← Q(s, a) + α [y − Q(s, a)]

buffer capacity = C
replay ratio = G

K

age of oldest policy = C
K

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 9 / 29

https://qdata.github.io/deep2Read/

Benchmarks

Following the original DQN paper [2], there was a flood of new methods
to improve performance and sample efficiency:

1 Double DQN [1]
I Reduce overestimation in update rule

2 Dueling DQN [4]
I Model the value and advantage

instead of action-value

3 Prioritized Experience Replay [3]
I Sample from buffer according to TD

error

4 C51 [5]
I Learn the distribution of returns

instead of the expectation

5 Noisy Networks [6]
I Control exploration with learned

parameters

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 10 / 29

https://qdata.github.io/deep2Read/

Ideas for Sample Efficiency

1 Making the most of existing samples
I New network architectures
I Hindsight/counterfactual credit assignment
I Learning better representations of the environment
I Avoid overfitting to limited experience

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 11 / 29

https://qdata.github.io/deep2Read/

How does replay impact learning?

There are two main parameters to investigate [11]:
1 age of the oldest policy

I how long ago (in terms of policy updates) was the oldest experience in
the buffer collected?

2 buffer capacity

Figure: Performance of Rainbow on subset of Atari games with different replay
ratios. Green indicates improvement over baseline.

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 12 / 29

https://qdata.github.io/deep2Read/

How does replay impact learning?

Two main conclusions:
1 Decreasing the age of the oldest policy (making learning closer to

on-policy) improves performance
I Learning focuses on more recent, higher performance data.
I Hard exploration games are a notable exception, where it seems more

important to cover a large portion of the state space.

2 Increasing the capacity of the replay buffer improves performance
I Better state-space coverage

Note that both of these suggest a lower replay ratio (G
K)

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 13 / 29

https://qdata.github.io/deep2Read/

How does replay impact learning?

Low replay ratios:

1 Reduce the risk of overfitting

2 Increase the diversity of experience in the buffer

3 Reduce sample efficiency

Some hope for improvement: taking lessons from distributed algorithms

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 14 / 29

https://qdata.github.io/deep2Read/

Distributed Reinforcement Learning

Distributed RL algorithms:

Sync experience across a large number of actors and update
parameters from a central server.

Or sync gradients across a large number of learners.

They are intended to maximize data throughput and wall-clock training
speed, with no concern for sample efficiency.

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 15 / 29

https://qdata.github.io/deep2Read/

Distributed Reinforcement Learning
Interestingly, they also perform significantly better than single-actor agents
[7]

What’s going on here?
Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 16 / 29

https://qdata.github.io/deep2Read/

Distributed Reinforcement Learning

As a byproduct of maximizing data
throughput, distributed algorithms:

1 Reduce the age of the oldest
policy in the replay buffer

2 Typically increase buffer
capacity

→ They (significantly) decrease the
replay ratio

Does that explain the performance
increase?

Early experiments suggest no...

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 17 / 29

https://qdata.github.io/deep2Read/

Distributed Reinforcement Learning

What else may be going on?

Collecting this much parallel experience also:

Increases the diversity of experience going into the buffer (in terms of
state space coverage)

I Exploration is independent

Decouples the agent from a particular timestep in a trajectory
I Each env is likely on a different step count

Is there a way to take these ideas and apply them to single (or few)
actor agents that are sample efficient?

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 18 / 29

https://qdata.github.io/deep2Read/

Ideas for Sample Efficiency

1 Making the most of existing samples
I New network architectures
I Hindsight/counterfactual credit assignment
I Learning better representations of the environment
I Avoid overfitting to limited experience

2 Making more data
I Data Augmentation (see last week)
I Creating new transitions by modeling the environment

F Model-based Reinforcement Learning

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 19 / 29

https://qdata.github.io/deep2Read/

Model-based Reinforcement Learning

Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

I Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [9]

I There is lots of work on model-based planning

We are going to focus on ’Dyna’-style algorithms, where a model is
used to generate additional training samples for an otherwise
model-free algorithm

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 20 / 29

https://qdata.github.io/deep2Read/

Model-based Reinforcement Learning

Any method that attempts to learn a model of the transition function
of the env is considered model-based. This is a very wide range of
methods.

I Even Experience Replay can be viewed as an accurate non-parametric
model of the env that we improve by adding new transitions. [9]

I There is lots of work on model-based planning

We are going to focus on ’Dyna’-style algorithms, where a model is
used to generate additional training samples for an otherwise
model-free algorithm

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 20 / 29

https://qdata.github.io/deep2Read/

Fitting the Model

Training the model is a relatively standard supervised learning problem

Given buffer D of experience
For batch {(s, a, r , s ′, d)} ∼ D:

Train with maximum-likelihood on predictions of (s ′, r , d), given (s, a)

There is lots of room to experiment here with advancements in time-series
modeling, especially in POMDPs...

The result is a model fθ(s, a) = (s ′, r , d)

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 21 / 29

https://qdata.github.io/deep2Read/

Dyna Algorithms
Environment → Model → Model-free Agent

Dyna Q-Learning

For M iterations:
For N real env steps:

Use πb to collect (s, a, r , s ′, d)
Denv = Denv ∪ {(s, a, r , s ′, d)}
if |Denv | > C1, remove oldest transition

Fit model fθ using Denv

For K modeled env steps:
Use πb to collect (s, a, r , s ′, d)
Dmodel = Dmodel ∪ {(s, a, r , s ′, d)}
if |Dmodel | > C2, remove oldest transition

For G updates:
sample B samples ∼ Dmodel

compute TD targets ŷ using (r , s ′, d)
Q(s, a)← Q(s, a) + α [y − Q(s, a)]

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 22 / 29

https://qdata.github.io/deep2Read/

Performance Bounds

How does performance in the modeled env correspond to the real one? [10]

Given real env MDP M, modeled MDP M̂, transition distributions TV
bound εm, policy divergence upper bound επ:

JM(π) ≥ JM̂(π)−
[

2γrmax(εm + 2επ)

(1− γ)2
+

4rmaxεπ
(1− γ)

]

This means that if it’s possible to improve performance by at least as
much as the right-most term, we can expect to improve in the actual env.

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 23 / 29

https://qdata.github.io/deep2Read/

Performance Bounds

branched rollouts are trajectories that start by rolling out a policy in
the real env, and then switch to using model-based transitions for k
steps

I If we started from the initial state dist, inaccurate models would be
useless at distant regions of the state space, due to compounding errors

I See [10] for a modified performance bound using this idea

To prevent against model exploitation, we train an ensemble of
models, and switch between them when generating trajectories

I This makes it difficult for the agent to reliably exploit inaccuracies in a
particular model

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 24 / 29

https://qdata.github.io/deep2Read/

Model Based Policy Optimization

One popular (recent) implementation of this idea: MBPO

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 25 / 29

https://qdata.github.io/deep2Read/

MBPO Results

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 26 / 29

https://qdata.github.io/deep2Read/

More Model-Based Ideas

Next week:

Modeling high dimensional observation spaces
I Video prediction
I Modeling in a compressed space (using AEs)

Model-based online methods

Offline RL
I Extreme case where Denv is fixed

Hindsight Credit Assignment

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 27 / 29

https://qdata.github.io/deep2Read/

References I

Hado van Hasselt, Arthur Guez, and David Silver. Deep
Reinforcement Learning with Double Q-learning. 2015. arXiv:
1509.06461 [cs.LG].

Volodymyr Mnih et al. “Human-level control through deep
reinforcement learning”. In: Nature 518.7540 (2015), pp. 529–533.

Tom Schaul et al. Prioritized Experience Replay. 2015. arXiv:
1511.05952 [cs.LG].

Ziyu Wang et al. Dueling Network Architectures for Deep
Reinforcement Learning. 2015. arXiv: 1511.06581 [cs.LG].

Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional
Perspective on Reinforcement Learning. 2017. arXiv: 1707.06887
[cs.LG].

Meire Fortunato et al. Noisy Networks for Exploration. 2017. arXiv:
1706.10295 [cs.LG].

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 28 / 29

https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1706.10295
https://qdata.github.io/deep2Read/

References II

Dan Horgan et al. “Distributed prioritized experience replay”. In:
arXiv preprint arXiv:1803.00933 (2018).

Andrew Ilyas et al. A Closer Look at Deep Policy Gradients. 2018.
arXiv: 1811.02553 [cs.LG].

Hado P van Hasselt, Matteo Hessel, and John Aslanides. “When to
use parametric models in reinforcement learning?” In: Advances in
Neural Information Processing Systems. 2019, pp. 14322–14333.

Michael Janner et al. When to Trust Your Model: Model-Based
Policy Optimization. 2019. arXiv: 1906.08253 [cs.LG].

William Fedus et al. Revisiting Fundamentals of Experience Replay.
2020. arXiv: 2007.06700 [cs.LG].

Presenter: Jake Grigsby (University of Virginia https://qdata.github.io/deep2Read/)Sample Efficient RL (Part 1) 202008 29 / 29

https://arxiv.org/abs/1811.02553
https://arxiv.org/abs/1906.08253
https://arxiv.org/abs/2007.06700
https://qdata.github.io/deep2Read/

	References

