Generalization in Deep Reinforcement Learning

Presenter: Jake Grigsby

University of Virginia
https://qdata.github.io/deep2Read/

202008

Presenter: Jake Grigsby (University of Virgini 202008 1/33

https://qdata.github.io/deep2Read/
https://qdata.github.io/deep2Read/

Generalization in supervised learning (SL) is measured by performance on a
held-out test set sampled from the same distribution as your training data.

Generalization error, Eg = test error — train error

Given:

o (Xtraim ytrain)y (Xtesta ytest) ~D
o Model f, loss function /(f(x), y)

|Xtest| |Xtrain‘

1

1
Tl 2

Ec(f) =
() ‘Xtrain‘ —1
J_

I(f(Xtest,i) s Ytest,i) — /(f(Xtrain,j)7 Ytrain,j)

202008 2/33

https://qdata.github.io/deep2Read/

We measure generalization in SL to be confident our models will perform

well on inputs they did not see during training.

What is the equivalent goal in RL?
o Performance on unseen states?
Yes, but this is only part of the picture
o Robust to slight variations in environment conditions
Changes to goals, dynamics, starting positions and observations.

202008

3/33

https://qdata.github.io/deep2Read/

As an example, let’s think about the classic cartpole task

How will a policy successfully trained to balance the pole adjust to:
o Changes in the height or mass of the pole?
o Changes in the speed of the cart (friction)?
o Changes in the color of the cart or background (pixel-based)?

202008 4/33

https://qdata.github.io/deep2Read/

Changing Environmental Conditions

=

Will the walker agent trained to traverse the terrain on the left be able to
walk down the stairs on the right?

Will the hopper agent trained to navigate one obstacle course be able to
complete the others?

Presenter: Jake Grigsby (University of Virgini 202008 5/33

https://qdata.github.io/deep2Read/

o If the agent truly understood the task it was solving, these changes
would not be a problem.

o Instead, if the agent has memorized a policy that worked during
training, any changes to the environment could be a real challenge.

We want to learn policies that avoid overfitting to the specifics of
the environment they were trained in.

This is " zero-shot generalization”

202008 6/33

https://qdata.github.io/deep2Read/

A Partially Observed Markov Decision Process (POMDP)
M=(S,A T,R,po,Q,0,7), consists of:

o S, a set of states

o A, a set of actions

@ a dynamics function T : SxAxS — [0, 1]
o a reward function R : SxA — R

@ an initial state distribution, pg

©

Q, a set of observations, which in the partially observed case # S
o an observation function O : SxQ — [0, 1]
o the discount factor vy € [0,1)

202008 7/33

https://qdata.github.io/deep2Read/

The goal of Reinforcement Learning is to find a policy 7(als) that
maximizes the return:

t=00
" = argmax E Z VIR,
T T~TT 1_'—0

Where 7 is a trajectory of experience (the sequence of states and actions
the agent experiences)

The return of a policy 7 in a POMDP M is denoted ()

202008 8/33

https://qdata.github.io/deep2Read/

More formally, these slight changes in the environment we've been talking
about create a family of POMDPS to solve:

D = { Moy, M1, M3, ...}

We can define generalization in RL as the gap in performance between a
training and test set of POMDPS:

Mtraina Mtest ~D
1 |M test ‘ 1 |M train ‘

Eg(m) = Moot i (TT) — My (T
() |Mtest| ; N ’I() |Mtrain| ; M, J()

202008 9/33

https://qdata.github.io/deep2Read/

There are three main approaches to improving generalization in RL:
Q Data Augmentation
Q Domain Randomization

@ Procedural Generation

202008 10/33

https://qdata.github.io/deep2Read/

In a POMDP, we have a set of states (S) and a set of observations ()

o States are a clear representation of all the relevant information needed
to make accurate decisions

o Observations are what the agent actually gets to see. Information is
often hidden because of limited memory, inaccurate sensors, or useless
noise.

Let a function ¢ : S — Q define how the environment emits observations
for a given state. We can break ¢ up into three subcomponents [10]:

¢(s) = h(f(s), &(s))

f maps the important state information to the dimension of the
observation, g outputs unimportant/ungeneralizable information, and h
combines them in some way to make the final observation.

202008 11/33

https://qdata.github.io/deep2Read/

Let's look at an example:

(x.y)-positions, Health, Score
Important Features |Raw State (s) Background

202008 12/33

https://qdata.github.io/deep2Read/

Observational Overfitting

Observational overfitting occurs when the policy becomes overly
dependent on features from g(s).

SCaRE
TIME 1:45
aiNgs| 8

r-anmc‘! | i q‘ | 1 ¥ ‘ llill

Figure 1: Example of observational overfitting in Sonic. Saliency maps highlight (in red) the top-left timer and
background objects because they are correlated with progress.

A similar problem occurs with ungeneralizable high-frequency features in
SL [1] [3] [11]

202008 13/33

https://qdata.github.io/deep2Read/

Is observational overfitting common in practice? We can test this by
replacing useless details (like the background) with random noise and
natural images ([7]). Performance is dramatically reduced!

(a) Swimmer

)

(c) HalfCheetah (d) Hopper

(a) Breakout (b) Gravitar

Figure 2: Atari frames, original (left), Gaussian noise (cen-
ter), and with natural video embedded as background (right).

202008

14/33

https://qdata.github.io/deep2Read/

We can prevent observational overfitting by making it difficult to rely on
features from g.

Data Augmentation [13] [15] [18] [12]:
o Convert gradient updates on observations into an expectation over a
set of transformations of those observations

Make it hard to rely on background noise by consistently changing the
way we present the observation to the agent

Input Translate Window Grayscale Cutout

Color-jitter Augmentations applied
consistently across
stacked f1

202008 15/33

https://qdata.github.io/deep2Read/

Data Augmentation ([13]), can match sample efficiency of model-based

methods:

500K STEP SCORES RAD CURL PLANET DREAMER SAC+AE SLACVI PIXEL SAC STATE SAC
FINGER, SPIN 947 926 561 796 884 673 192 923
* + 101 +as + 284 + 183 +128 +92 =+ 166 +211
CARTPOLE, SWING 863 845 475 762 735 _ 419 848
g +9 +as +71 +27 +63 + a0 +15
REACHER, EASY 955 929 210 793 627 _ 145 923
: 71 das +a4 + 164 + 58 +130 + 24
c 728 518 305 570 550 640 197 795
HEETAH, RUN +71 +a2s +131 + 253 +34 +19 +15 + 30
WALKER, WALK 918 902 351 897 847 842 42 948
' +16 +43 + 58 +49 +as +s1 +12 + 54
. 974 959 460 879 794 852 312 974
Cue, cate +12 +27 + 380 + 87 + 58 +71 +63 +33

100K STEP SCORES

FINGER, SPIN 856 767 136 341 740 693 224 811
* +73 +56 +216 +70 +64 + 141 + 101 + 16
CARTPOLE, SWING 828 582 297 326 311 _ 200 835
g +27 E 146 +39 +27 +1 +72 + 22
REACHER, EASY 826 538 20 314 274 _ 136 746
: +219 +233 +s0 +155 +14 +15 +25
CHEETAH, RUN 447 299 138 235 267 319 130 616
i +38 a8] +137 +£24 +36 12 ESH]
WALKER, WALK 504 403 224 277 394 361 127 891
' +191 +24 +as +12 +22 +73 +24 + 82
N 840 769 0 246 391 512 97 746
CuP, caTCH 179 E43 = +174 + 82 £ 110 +27 +91

202008

16 /33

https://qdata.github.io/deep2Read/

However, not all combinations of transformations are helpful:

Rotate Cutout-color Flij

Crop Gray Rotate Cutout Color- Flip
scale Jitter No Aug Crop Random Conv Cutout

Grayscale

(a) Scores on DMControl500k for Walker, (b) Spatial attention map of augmentations for Walker, walk.
walk.

Test performance
= Pixal PPO — RAD (flip)
50 = RAD (grayout) RAD {rotate)
= RAD (colorjitter) == RAD (crop)

RAD (cutout-color) — RAD {gutout)
404 RAD (random conv)

E 30+ I~
204
104 /
o T T T
1} 50 100 150 200
Timesteps (M)

We need to pick transformations that preserve the quantity we are fitting

(Q(s, a) or w(als)) [15]

202008

17/33

https://qdata.github.io/deep2Read/

Data Augmentation

Another approach: reduce dependence on features from g, while also
improving performance on other tasks with different visual styles:

Level 1 Level 2

0 20 40 60
Level 1 in the style of Level 2
0

Use arbitary style transfer [4] to map the g features from one task onto all
the other tasks in our dataset.

Presenter: Jake Grigsby (University of Virgini 202008 18/33

https://qdata.github.io/deep2Read/

Data Augmentation deals with generalization in observation space, but
how do we improve generalization across core environment dynamics

(T(s,a,s))?

Convert a single task into a distribution of tasks by randomizing as
many aspects of the environment as possible, and resampling those
aspects every time we reset

This is called Domain Randomization [2] [14]

202008 19/33

https://qdata.github.io/deep2Read/

Domain Randomization

For some tasks, we cam implement this by simply reseeding the RNG after
every environment reset [6]

60 — 1lseed go —— 1lseed
. —— 2 seeds —— 2 seeds
s s
£ —— 5 seeds 60
Wao w J—
c c
K] _— 2 —_
® A
20 N
< ©
@ 520
c c
@ <
o o

o

o 20000 40000 60000 80000 100000 o 20000 40000 60000 80000 100000
Episodes Episodes

Figure 1: The 6-dim Acrobot (left) and Pixel Acrobot (right), varying number of train seeds from 1 to

100, with v = 0.99. Averaged over 5 runs. Trained for 10K episodes (6-dim) and 100K episodes
(Pixel).

Presenter: Jake Grigsby (University of Virgini 202008 20/33

https://qdata.github.io/deep2Read/

Explicitly expand the parameter range of each component of the
environment (wind, friction, agent mass, etc), and sample from that range
after each reset [2] [14]. Multiple training types [5]:
O Deterministic (D): every parameter is held fixed. When the
environment is reset, only the state is reset.
@ Random (R): parameters are sampled (uniformly) after every reset
from a reasonable range (in-distribution interpolation)
O Extreme (E): parameters are sampled from a range twice as wide as
the Random version (out-of-distribution extrapolation)

202008 21/33

https://qdata.github.io/deep2Read/

Table 2. Generalization performance (in % success) of each algorithm, averaged over all environments (mean and standard deviation over

five runs).
Algorithm Architecture Default Interpolation Extrapolation
A2C FF 78.14 £6.07 76631148 63.724+2.08
RC 81.254+348 72224295 60.76 + 2.80
PPO FF 7822+153 7057+6.67 4837+321
RC 2651 +£971 41.03+6.59 2159+ 10.08
EPOpt-A2C FF 2.46 +2.86 7.68 £0.61 235+ 1.59
RC 991+1.12 2089 +1.39 5424024
EPOpt-PPO FF 8540+8.05 85154659 5926+ 581
RC 551+£574 1540+ 3.86 9.99 +7.39
RL2-A2C RC 45779+ 6,67 4632+471 3354+ 4.64
RL2-PPO RC 22224446 29934+897 2136+441

202008 22/33

https://qdata.github.io/deep2Read/

Domain Randomization

Domain randomization can even be enough to generalize from simulation
to the real world [2]:

Fig. 1. Ilustration of our approach. An object detector is trained on
hundreds of thousands of low-fidelity rendered images with random camera
positions, lighting conditions, object positions, and non-realistic textures.
At test time, the same detector is used in the real world with no additional
training.
Presenter: Jake Grigsby (University of Virgini 202008 23/33

https://qdata.github.io/deep2Read/

Procedural Generation

Leverage procedural generation to create as many training tasks as we
need. This is becoming a staple of recent RL benchmarks:
o Procgen [9] [8]

Figure 1. Screenshots from each game in Procgen Benchmark.

Presenter: Jake Grigsby (University of Virgini 202008 24 /33

https://qdata.github.io/deep2Read/

Procedural Generation

o POET [16]

» Locomotion across varying terrain
» Also involves curriculum-learning/open-endedness

A

A it MIE

Presenter: Jake Grigsby (University of Virgini 202008 25/33

https://qdata.github.io/deep2Read/

Procedural Generation

o ALLSTEPS [17]

» Continuous control through increasingly difficult environments

F 3 il

Figure 1: Virtual human (left), Cassie (middle), and Monster (right) walk across randomly g d stepping-stone terrain.

202008 26 /33

https://qdata.github.io/deep2Read/

Procedural generation gives us an opportunity to measure the impact of
training set size on generalization [8]:

Score

CoinRun StarPilot CaveFlyer Dodgeball
. i 100 101, i
8 20 7513y Y
6 Y 10 501 ¥ ¥ s
v e 251+
FruitBot Chaser Miner Jumper Leaper Maze
- — e 1007 100
0{ 8 20 5 * .
/i N - 6") oas{ of 75
101y // 6 . a 501+ 5.0
10 25
ol A 4 21¢ A 251
BigFish 10 Heist Climber Plunder Ninja BossFight
— 3 2 3 T
2 g 75 1001 N4 . Rl . 1
& 5.01 iy 75
10] % ! A 101" y 6 10
1 25 / 50 3
oLt ,/ v . nE o
107 10° 10° 10° 107 10° 10° 10° 10° 10° 10 10° 107 10° 10¢ 10° 107 10° 10° 10° 107 10° 10° 10°
Number of Levels — Train
—— Test

202008

27/33

https://qdata.github.io/deep2Read/

Model architecture/capacity - often a forgotten implementation detail in
model-free RL - starts to matter more when learning distributions of tasks

[8]:

IMPALA-CNN x 1 IMPALA-CNN x 1 Train
IMPALA-CNN % 2 IMPALACNN x 2 —— Test
IMPALA-CNN % 4 IMPALA-CNN = 4
0a{ — Nature-CNN J,_/—-::Lﬁ:: 08] — Nature-CNN
g s 2
o =}
5 8
) &
o o - 08
[@
N N
‘© ©
£ £
5 o 5 oa i
z z o
c c //
8 5 -~
= = 0 //
A
o0 00
T B w B aw s 1w am [I I TR T T TR TRt TR T)
Timesteps (M) Timesteps (M)

202008 28/33

https://qdata.github.io/deep2Read/

Sample efficiency and offline learning, with model-based RL as a form of
data augmentation.

202008 29/33

https://qdata.github.io/deep2Read/

“Measuring the tendency of CNNs to
learn surface statistical regularities”.

“Domain randomization for transferring deep
neural networks from simulation to the real world" .

“ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness”.

Learning Linear Transformations for Fast Arbitrary
Style Transfer.

“Assessing generalization in deep reinforcement
learning” .

202008 30/33

https://doi.org/10.1109/iros.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133
https://arxiv.org/abs/1808.04537
https://qdata.github.io/deep2Read/

“A dissection of
overfitting and generalization in continuous reinforcement learning”.

“Natural environment
benchmarks for reinforcement learning”.

“Leveraging procedural generation to benchmark
reinforcement learning” .

“Quantifying generalization in reinforcement
learning’”.

“Observational overfitting in reinforcement
learning’” .

202008 31/33

https://qdata.github.io/deep2Read/

High Frequency Component Helps Explain the
Generalization of Convolutional Neural Networks.

Image Augmentation
Is All You Need: Regularizing Deep Reinforcement Learning from
Pixels.

“Reinforcement Learning with Augmented
Data”.

“Active domain randomization”.
“"Automatic Data Augmentation for

Generalization in Deep Reinforcement Learning”.

202008 32/33

https://arxiv.org/abs/1905.13545
https://arxiv.org/abs/2004.13649
https://qdata.github.io/deep2Read/

Enhanced POET: Open-Ended Reinforcement
Learning through Unbounded Invention of Learning Challenges and
their Solutions.

“ALLSTEPS: Curriculum-driven Learning of
Stepping Stone Skills" .

“Rotation, Translation, and Cropping for Zero-Shot
Generalization”.

202008 33/33

https://arxiv.org/abs/2003.08536
https://arxiv.org/abs/2005.04323
https://qdata.github.io/deep2Read/

	References

