Actor-Critic Methods for Control

Presenter: Jake Grigsby

University of Virginia
https://qdata.github.io/deep2Read/

202008

Presenter: Jake Grigsby (University of Virgini 202008 1/23


https://qdata.github.io/deep2Read/
https://qdata.github.io/deep2Read/

Control Tasks in RL:

@ Involve fast, accurate interpretation of sensory data to take actions
that have an immediate effect

Simple credit assignment

o Do not involve significant amounts of exploration, long-term memory
or planning

Partially observed tasks can be solved with a window of recent frames
o Have dense reward signals

Meaningful variance in returns near the randomly initialized policy

202008 2/23


https://qdata.github.io/deep2Read/

o Classic RL Problems

. J

The Acrobat task involves
swinging a hinged arm

CartPole task involves balancing
a pole on a moving platform

202008 3/23


https://qdata.github.io/deep2Read/

o Continuous Control

Tasks with continuous (and usually multi-dimensional) action spaces

202008 4/23


https://qdata.github.io/deep2Read/

Continuous Control MDPs:
o States:

Representations of the essential dynamics (joint position, velocity,
angle...). Low-dimensional, " State Based”, Fully Observed
3rd person camera views of the rendered scene. High-dimensional,
"Pixel Based”, Partially Observed

o Actions:

Real-valued scalars that apply to specific components of the model's
control interface, such as the torque on each joint/motor

o Rewards:

Typically based on some measure of efficient motion, such as velocity
or distance from the starting point

202008 5/23


https://qdata.github.io/deep2Read/

Locomotion: control limbs and joints to move a 3D model efficiently in a
simulated physics engine.

Hopper (14, 4, 15): The planar one-legged hopper introduced in (Lil-
licrap et al., 2015), initialised in a random configuration. In the stand
task it is rewarded for bringing its torso to a minimal height. In the hop
task it is rewarded for torso height and forward velocity.

Cheetah (18, 6, 17): A running planar biped based on (Wawrzynski,
2009). The reward r is linearly proportional to the forward velocity v up
to a maximum of 10m/s i.e. (v) = max (0, min(v/10,1)).

202008 6/23


https://qdata.github.io/deep2Read/

‘Walker (18, 6, 24): An improved planar walker based on the one
introduced in (Lillicrap et al., 2015). In the stand task reward is a
combination of terms encouraging an upright torso and some minimal
torso height. The walk and run tasks include a component encouraging
forward velocity.

Humanoid (54, 21, 67): A simplified humanoid with 21 joints, based
on the model in (Tassa et al., 2012). Three tasks: stand, walk and run
are differentiated by the desired horizontal speed of 0, 1 and 10m/s, re-
spectively. Observations are in an egocentric frame and many movement
styles are possible solutions e.g. running backwards or sideways. This
facilitates exploration of local optima.

202008

7/23


https://qdata.github.io/deep2Read/

Control Tasks in RL

Manipulation: continuous control tasks meant to emulate fine motor
control on modern robotics systems.

FetchPickAndPlace-v1 FetchPush-vi FetchReach-v1
Lift a block into the air. Push a block to a goal Move Fetch to a goal
position. position.

FetchSlide-v1 t 0 t 0
Slide a puck to a goal Orient a block using a robot Orient an egg using a robot
position. hand. hand.

Presenter: Jake Grigsby (University of Virgini Actor-Critic Methods for Control 202008 8/23


https://qdata.github.io/deep2Read/

Control Tasks in RL

o The Atari 2600 Benchmark (ALE/Atari 57)

000'k 009 00s ooy 00€ ooz 004 0
1 1 1 1

[Bnel-UBWNY MofRE

9AOGE 40 [@AB|-UBWINY Iy

%0|[ eBuaney s,ewnzajuop

w2 akg epeaug

| e

wo)[ eyqusory

sposisy

UR-0Bd S

[ Bumog

[ »unq elanog
1senbees

[ sumuep

[ ueny

[ sepiuy

[ uoxxez

[ prey jeay

[ 1sieH sueg

[ epednusn

[ puewwos Jeddoud
JOM JO prezIA

r suoz spjeg

r Xuajsy

[ou3H

1.0

AavooH 0|

umog pue dn

[ Aqueq Buysiy

[ ounpug

[ 1ong ewiy

[ Aemoaiy

[ seise nd-Buny

[ weuiuein,

[ sopiy weeg

[ siepenul aceds

[ Buog

[ sy

[ puog sewer

[ oorebuey

[ souuny peoy

!

sz

Montezuma's Revenge requires exploration,
complex navigation, and leng-term planning

it

0

times and precise inputs

!

[ mus
swes siy) sweN
[ sjoeny uowsg

:ames like Breakout and Boxing require fast reaction

[ snuepy

[ uejogoy
Jouung Keyg

[ noxyeasg

[ Bupog

[ Irequig oepin

9/23

202008


https://qdata.github.io/deep2Read/

Most of the problems (Deep) RL algorithms solve can be loosely classified
as Control Tasks.

Some notable exceptions:
o Two player board games
AlphaGo and AlphaZero augment Deep RL with planning (MCTS)
o Dota 2 (OpenAl Five), Starcraft Il (AlphaStar)

Model-free agents do start to show long-term planning... with
recurrent architectures and thousands of years of gameplay

But these games have a ton of control-like subproblems (combat, item
selection...). Professional human players make hundreds of split-second
decisions per minute.

202008 10/23


https://qdata.github.io/deep2Read/

A Markov Decision Process (MDP) consists of:
o S, a set of states
o A, a set of actions
o R CR, a set of rewards
@ a dynamics function p : SxXRxSxA — [0, 1]

p(s',r|s,a) = Pr{S: =, Ry = r|St_1 = s, Ar_1 = a}

@ an initial state distribution, pg

It's common to break the dynamics function p up into a Transition
Function T(s,a,s') = Z p(s’, r|s,a), and a Reward Function
reR
R(s,a) = Z r Z p(s', rls, a)
reR s'eS

202008

11/23


https://qdata.github.io/deep2Read/

The goal of RL agents is to find a policy! 7 : S — A that maximizes the
expected discounted return

t=o00
7 = argmax E E vR;
s T~ —0

where v € [0, 1) is the discount factor that lets us deal with non-episodic
tasks and 7 is a trajectory (a sequence of states and actions that describe
the agent’s experience)

!Policies can also be stochastic, in which case they're written 7(a|s) : Sx.A — [0,1]
202008  12/23


https://qdata.github.io/deep2Read/

Value methods (SARSA, Q-Learning, ...) build their policy functions by
maxing over the state space:

7(s) = argmax Qy(s, a)

When actions are continuous and high-dimensional, we skip the max
operation by directly parameterizing the policy (7).

Outputs are either the deterministic action choice, or the mean and std of

a distribution to sample from:

mo(s) = a

m(s) ~ N (uo(s), o0(s))

In practice, the std parameters are learned, but often state-independent.
202008  13/23


https://qdata.github.io/deep2Read/

Actor-Critic algorithms bring Policy lteration to continuous action spaces

evaluation

Vas vg

T \%4

7~ greedy (V)

improvement

* Uy Ts

(P e—

Policy Iteration iteratively evaluates and improves and a policy until
convergence

202008 14 /23


https://qdata.github.io/deep2Read/

General Actor-Critic approach:
Initialize an actor network 114, and a critic network gy,
For k=1,2,3,...

Q Sample trajectories (st, at, rt, St+1, de+1) from the environment using
the current pig,

@ Use sampled trajectories to construct Temporal Difference targets (y)
and optimize gy

N
Appy1 Aok — OV Z — gy, (s, al))?
i=0

O Replay the experiences and move actions in the direction
recommended by the critic

N
1 i i
Horyy € Ho, + O‘vﬁ Z q¢>k+1(5( )7 MGk(S( )))
i=0

202008 15/23


https://qdata.github.io/deep2Read/

o Use a replay buffer to store experience between updates, increasing
sample efficiency
Off-policy learning can hurt stability
o Use target networks to stabilize loss functions where the same
parameters appear twice
o Deterministic policy - use action-space noise during experience
collection to increase exploration.

202008 16 /23


https://qdata.github.io/deep2Read/

Algorithm 1 Deep Deterministic Policy Gradient

1: Input: initial policy parameters #, Q-function parameters ¢, empty replay buffer T

2: Set target parameters equal to main parameters f,,, < 6, rap — @

3. repeat

4 Observe state s and select action a = clip(ps(s) + €, @rows @pign), where € ~ A

5 Execute a in the environment

6 Observe next state s', reward r, and done signal d to indicate whether s is terminal
7. Store (s,a,r, s, d) in replay buffer D
8;
9.

If s is terminal, reset environment state.
. if it's time to update then
10: for however many updates do

1 Randomly sample a batch of transitions, B = {(s,a,r, s, d)} from D
12: Compute targets

w(r s’ d) =1+ (1 = d)Qpuus (5 Ho1ues (5))

13: Update Q-function by one step of gradient descent using
2
vdﬁ S (Qulsia) — y(r s d))
(sans’ deB
14: Update policy by one step of gradient ascent using

vgﬁ 3 Quls, uals))

seB

15: Update target networks with
Prarg + PPracg + (L = plop
Otarg += phraxg + (1 — p)0

16: end for
17.  end if
18: until convergence

iversity of Virgini 202008 17 /23



https://qdata.github.io/deep2Read/

o By updating the actor based on the critic's estimations, we risk
learning to exploit (s, a) pairs whose value the critic overestimates

Elgs(s, mo(s))] = E[g”(s, ma(s))]

See Section 4.1 of [3]

400 500

400

%)
=}
=}

300

[N
=3
=3

200

Average Value

o
=)

mCDQ - TrueCDQ qqp
DDPG -=- True DDPG

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1€6)

(a) Hopper-v1 (b) Walker2d-v1

=3

Figure 1. Measuring overestimation bias in the value estimates
of DDPG and our proposed method, Clipped Double Q-learning
(CDQ), on MuJoCo environments over 1 million time steps.

202008 18/23


https://qdata.github.io/deep2Read/

o Clipped Double Q Learning to address overestimation
-y = rt + ’y IZ]I_,; q¢i(st+17 7Tgt‘arg(st"l‘]-))

o Delayed policy updates

The learning speed of each network is a difficult thing to tune (similar
to GANs?)

o Target Smoothing

Add noise to the target network’s actions when computing y. Smooths
the function’s surface by fitting the value of a small neighborhood
around the target.

Y = 1oty Min Qo (Ser1s Mo (Se+1)) + €

e ~ clip(N(0,0),—c,c)

'There are actually lots of similarities between AC and GANs, see [2]
202008  19/23


https://qdata.github.io/deep2Read/

Algorithm 1 Twin Delayed DDPG
1: Input: initial policy parameters 8, Q-function parameters ¢, ¢, empty replay buffer D
2: Set target parameters equal to main parameters fiapy < 0, Grarg1 < @1, Grang2 — @2
3: repeat
. Observe state s and select action a = clip(jte(s) + €, @ 0w, Tirign), Where € ~ A
5 Execute a in the environment
6 Observe next state s', reward r, and done signal d to indicate whether " is terminal
7. Store (s,a,r,s',d) in replay buffer D
8
9

'

If &' is terminal, reset environment state.
;if it’s time to update then
10: for j in range(however many updates) do

11 Randomly sample a batch of transitions, B = {(s,a,r,s'.d)} from D
12 Compute target actions

@'(5) = clip (g, () + cliDle, —€,€), Qow, Amign) . € ~N(0,0)
13 Compute targets

ylrs'yd) = +9(1 = d)min Oy, (', d'(s")

14 Update Q-functions by one step of gradient descent using
1
Vargp L @als.a) =y )’ fori— 1.2
[ (s,ars BB
15: if j mod policy delay =0 then
16: Update policy by one step of gradient ascent using

Vo‘lgl ; Qe (s, p1o(s))

17: Update target networks with
Grargs < Prargs + (1 = p)s fori =1,2
Orarg + Plrarg + (1 — )@
18: end if
19: end for
20:  end if

: Jake Grigsby (University of Virgini 202008 20/23



https://qdata.github.io/deep2Read/

o Stochastic policy
No need for extra exploration noise - just sample from the action
distribution. We introduce an entropy regularization term to encourage
diversity.

o Changes to target updates
Use active actor network for TD targets

*4]
202008 21/23


https://qdata.github.io/deep2Read/

Algorithm 1 Soft Actor-Critic
1: Input: initial policy parameters , Q-function parameters ¢, ¢2, empty replay buffer D
2: Set target parameters equal to main parameters Drarg1 — 1, Drarg2 ¢ 2
3 repeat
4. Observe state s and select action a ~ mg(:|s)
5 Execute a in the environment
6 Ohserve next state ', reward r, and done signal d to indicate whether s’ is terminal
@
8
9;

Store (s,a,r,s',d) in replay buffer D
If &' is terminal, reset environment state.
9. if it’s time to update then
10: for j in range(however many updates) do

11: Randomly sample a batch of transitions, B = {(s,a,r,s'.d)} from D
12: Compute targets for the Q functions:

y(r,s',d) =r+(1-d) (l[l{l%Q¢(_,‘_l(s’,ﬁ’) —alog ﬂg(&’\s’)) ,oa ~ (|8
i=1;

13: Update Q-functions by one step of gradient descent using
1
V"‘Fl S @als.a)—ylr.s d)) fori=12
[ (s.ars d)EB
14 Update policy by one step of gradient ascent using

Ve‘B‘Z(meu s,a(s)) = arlog i (a(s)]3) ).

where dg(s) is a sample from m(-|s) which is differentiable wrt § via the
reparametrization trick,

15 Update target networks with

Drargi  PPrargi + (1 — p)eds fori=1,2
16: end for
17 end if

18 until convergence

: Jake Grigsby (University of Virgini 202008 22/23



https://qdata.github.io/deep2Read/

Locomotion Results

HopperBulletEnv-v0

2500

2000

1500

return

1000

500

1750

Walker2DBulletEnv-v0

1500

1250

1000

return

750

500

250

Agent
— DDPG
— T3
— sac

o 200000 400000 600000 800000 1000000

Ant2DBulletEnv-v0

0 200000

400000 600000 800000 1000000

Agent
2000 { — DOPG
— T3
— sac
1500
£ 1000
500

) 200000

2Link to implementations
Jake Grigsby

niversity of Virgini

400000 600000

800000 1000000

202008

23/23


https://github.com/jakegrigsby/deep_control
https://qdata.github.io/deep2Read/

Continuous control with deep reinforcement learning.

“Connecting Generative Adversarial
Networks and Actor-Critic Methods" .

“Addressing
function approximation error in actor-critic methods” .

“Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor”.

202008

23/23


https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1610.01945
http://arxiv.org/abs/1610.01945
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://qdata.github.io/deep2Read/

	References

