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Subgraph Property Prediction
» Given Graph G = (V, E) and subgraph G’ = (V' E’) where
V'CVand E' CE.
» Each subgraph S has a label y° and many S¢ which is a set
of nodes in S that are connected to each other by a path.

» The task : if a subgraph has a specific property or not Graph
G: subgraphs defined by node membership
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Why are subgraph property prediction challenging?

» make joint predictions over larger structures of varying sizes:
do not correspond to simple k-hop, possibly disconnected and

far off

» higher-order connectivity patterns: how nodes within the
subgraph interact and how they interact with nodes outside
the subgraph (border and extenral nodes)

» subgraphs can be localized within a region of the graph or
spread out: learn about the subgraph positions within the
graph

» subgraphs share edges and non edges



Formulating Subgraph Prediction

subgraph problem

Given subgraphs (S1,...,S,) the task is to get embeddings
zs € R for every subgraph S. SUB-GNN uses a GNN to learn a
classifier f: S — {1,...,C} f(S) = ys.

Difference from other gnns: operates directly on components



Subgraph Properties to encode

network properties that are not necessarily defined for either nodes
or graphs.

SUB-GNN Channel SUB-GNN Subchannel

Internal (1) Border (B)
Position (P) Distance between S;’s components  Distance between S; and rest of G
Neighborhood (N) Identity of S;’s internal nodes Identity of S;’s border nodes
Structure (S) Internal connectivity of S; Border connectivity of S;




subgraph properties: position

» border position: distance to the rest of G

» internal: distance between the components of G



subgraph properties: neighborhood

» border neighborhood: nodes within k-hops of any node in S,
each component has its own border neighborhood

» internal neighborhood



subgraph properties: structure

» internal : internal connectivity of each subgraph

» border: edges connecting internal nodes to border
neighborhood



sub graph level message passing: Anchor Patches

> A= (AL, ... AQ)
» anchor patches are subgraphs sampled from G specific to each
channel : P, Nand S



sub graph level message passing: Anchor Patches to
subgraph components

v

A= (AL ... AQ)

anchor patches are subgraphs sampled from G specific to each
channel : P, N and S

MSGx c = vx(Ax, S)px

~v is a similarity function for channel X
ax.c= AGG/\/I(MSG)((SC, Ax, px)VAxinAx)
h>l<,c = U( Wh[aX,c; hijcl )

v

vV vYyy



Property-aware output representations

> a matrix Mx where each row is an anchor set message
computed by MSGx

» pass through a non linear activation function to get z, .

» for neighborhood: use zy . = hy c



Agregating Property-aware output representations
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z, ¢ for a channel x and a subgraph component ¢
First aggregate using channel aggregator AGG¢
Then aggregate using layer aggregator AGG,
now we have z.

READOUT from z. to zs

Finally, SUB-GNN routes messages for internal and border
properties (i.e., {P, Pg}, {N;, Ng},{S/, Sg}) within
subchannels for each channel P, N and S, and concatenates
the final outputs



A px, Y

» Sampling anchor patches
» Neural encoding of anchor patches

» Estimating similarity of anchor patches.



Sampling anchor patches

v

(25)( : (G,SC) — AX
Internal position sampler node up € S, shared across all
components in S

v

Border position sampler node vp € G shared across all S
Neighborhood internal sampler node uy € S
Neighborhood border sampler node vy € k — hop of S¢

vvyyypy

structure anchor sampler : connected component sampled
from G via triangular random walks



Neural encoding of anchor patches

For position and neighborhood anchor patches, same as initial node
embeddings :

Yy =Yp = N; (1)
For structure nodes:
s : As — p € R (2)
> w fixed length triangular random walks (ur, (1), - - ; Ur,(n))

» The triangular random walk samples triangular successors with
probability 5 and non-triangular successors with probability
1-5.

» input to LSTM, use sum of hidden states = p



Neural encoding of anchor patches

For structure nodes, random walk strategy:
» internal: random walks over set | {u|u € As}

» neighborhood: random walks over set N {v|v ¢ Ag} limited to
neighborhood k hops

» border: random walks over set {ulu € I,v € N,uv € E}

» multiple random walks but single p



Estimating similarity of anchor patches and subgraph
components

>

similarity between subcomponent of subgraph and anchor
patch
x (8¢, As) = [0,1]

1
dSP(As, 5(_') +1
dsp is the shortest path between connected components S¢
and anchor path Asg

for the position channel, vp =

for structure channel, use the normalized Dynamic Time
Warping (DTW) !

1
SC Ag) =
15(575AS) = B Wda ds) 1
das, ds.: ordered degree sequences for the subgraph
component and anchor patch

lused to compare time signals of varying speed



Algorithm summary

Algorithm 1: SUBGRAPH NEURAL NETWORK.

Input: Graph G = (V, E); Node representations {x,,|u € V'}; Subgraph S consisting of connected
components S' © forc = 1,..., R; Channels N, S, and P corresponding to neighborhood, structure,
and position; Subchannels I and B corresponding to internal and border subgraph topology; Anchor
patch sampling function ¢ : (G,S) — Ay; Anchor patch encoder 1y : Ax — R%; Trainable
weight matrices W)((l)z and W)((l),l for each layer [ € (1, L] and each channel X; Nonlinear activation
function o.

Output: Subgraph representation hg for subgraph .S
0 _

2. = Zugsm) Xy

h} =22 for channel X € {N,s,P} // Channel-independent initialization

for layer i =1,...,L do

A = ¢(G) for g € {1,...,Q} and channel X € {s,, Sy, Py} // See Section 4.2
AQY = ox(G,S) forq € {1,... ,Q} and channel X € {P,}
for connected component c = 1,. do
AP = ¢(G,S©)) forq € {1 4.,Q} and channel X € {N;,Np}
for channel X € {{P;,Ps}, {Ni,Nz}, {S1,S5}} do
for anchor patchq = 1,. ..,
P = g (AL // E.g., Algorithm 2
m{), , = MSGy(5(©), AQ, p{®) // (Eq.1)
MO =m0 it € {5.07.)
end
zg)c = o(Wg,) M(l) o) ifx e {S*,P*} // Property-aware output rep.
ag(l,)c =AGGy ({mx( - ,mx, oh) // Aggregate messages (Eq.2)
h§{}c = o(W;lY) [aX o ,(:Cl)]) // Order-invariant hidden rep. (Eq.2)
end
20 = AGGc(hgf)c,zsl)c,z,.l)) // Aggregate channels
end
end
Z AGGL({zﬁg), .. .,sz)}) // Aggregate layers

hg = READOUT({zy, ...,zr}) // Aggregate components



Sub-GNN Figure
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Computational Complexity and model extensions

» function of (number of subgraphs, size of the subgraphs)

» also depends on number of anchor patches: prespecified and
fixed

> possible to use other types of similarity or joint learning of
node embeddings



Synthetic Experiments
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subgraph properties: density, cut ratio, coreness, component
density: internal structure(250 subgraphs of size 20)
cut ratio: border structure(250 subgraphs of size 20)

coreness: average core number of the subgraph, tests border
structure and position (221 subgraphs of size 20)

component: the number of subgraph components, (250
subgraphs with 15 nodes per component) tests internal and
external position.



Real World Datasets

» PPI-BP : 1591 subgraphs with 6 labels, labeled using
Biological Process Ontology from MSigDB, Subgraphs are
collections of proteins in the PPI network that are involved in
the same biological process

» HPO-METAB : graphs of causal genes and symptoms, with
subgraphs defined by symptoms. 2400 subgraphs with 6 labels
from metabolic disorders: lysosomal, energy, amino acid,
carbohydrate, lipid, and glycosylation.

» HPO-NEURO : about neurological disorders

» EM-USER : subgraphs about work out routines with 1343
sugraphs. Label is gender



HPO dataset challenges

» distinguishing subcategories of similar diseases (a challenge for
averaging-based methods),

» exhibit class distributional shift between train and test, and
have been designed to require inductive inference to nearby
phenotypes using edges in the graph.

» require distinguishing subcategories of similar diseases (a
challenge for averaging-based methods),



Baselines

P> AVG: average of the node embeddings of the subgraph

» MN-GIN and MN-GAT: use virtual node to represent a
subgraph

> s2v-N, s2v-S, s2v-NS: suhgraph 2 Vec

» GC: treat each subgraph as standalone graph using average of
node embeddings

> pretrained: GIN on link prediction



Simulation microF1

Method | DENSITY |CUT RATIO | CORENESS | COMPONENT
SUB-GNN (Ours) 0.919+0.016 | 0.629+0.039 | 0.659+0.092 | 0.958+0.098
Node Averaging 0.429+0.041 | 0.358+0.055 | 0.530+0.050 | 0.516=+<0.001
Meta Node (GIN) 0.442+0.052 | 0.423+0.057 | 0.611+0.050 | 0.784+0.046
Meta Node (GAT) 0.690+0.021 | 0.284+0.052 [ 0.51940.076 | 0.935+<0.001
Sub2Vec Neighborhood | 0.345+0.066 [ 0.339+0.058 | 0.381+0.047 | 0.568+0.039
Sub2Vec Structure 0.339+0.036 | 0.345+0.121 | 0.404+0.097 | 0.510+0.013
Sub2Vec N & S Concat | 0.35240.071 | 0.303+0.062 | 0.356+0.050 | 0.568+0.021
Graph-level GNN 0.816+0.068 | 0.377+0.058 | 0.419+0.070 | 0.52640.081




Real World microF1

Method | PPI-BP |HPO-NEURO | HPO-METAB | EM-USER

SUB-GNN (Ours) 0.324+0.013 | 0.632+0.010 | 0.537-+0.023 | 0.751+0.021
Node Averaging 0.289+0.043 | 0.490+0.059 | 0.443+0.063 |0.744+0.086
Meta Node (GIN) 0.277+0.040 | 0.233+0.086 | 0.151+0.073 |0.550+0.025
Meta Node (GAT) 0.308+0.032 | 0.259+0.063 | 0.138+0.034 |0.536+0.047
Sub2Vec Neighborhood | 0.309+0.023 | 0.211+0.068 | 0.132+0.047 | 0.503+0.035
Sub2Vec Structure 0.307+0.013 [ 0.223+0.065 | 0.124+0.025 |0.742+0.023
Sub2Vec N & S Concat | 0.295+0.011 | 0.206+0.073 | 0.114+0.021 |0.536-+0.047
Graph-level GNN 0.291+0.026 [ 0.577+0.015 | 0.480+0.026 |0.505+0.041




Channel Ablation Analysis

aligns with their inductive biases

SUB-GNN Channel | DENSITY | CUTRATIO | CORENESS | COMPONENT
Position (P) 0.758+0.046 0.51640.083 | 0.581+0.044+ |0.958+0.098 ¢
Neighborhood (N) | 0.777+0.057 0.313+0.087 0.485+0.075 0.823+0.089
Structure (S) 0.919-0.016 ¥ | 0.629+0.039 0.663+0.058 | 0.600-£0.170
All (P+N+S) 0.894+0.025 0.458+0.101 0.659+0.092 0.726=+0.120




