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Variational Auto-Encoder
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Maximize ELBO:

Eq(zix)log(p(x]2)) — KL(q(z|x)||p(2))

» Term 1: Reconstruction
» Term 2: prior



Objective

Learning independent factors of generation in an unsupervised

manner

» In the above image, generated image depends on : color of
walls, size, shape, color of object



Disentangled representations

» If we change one latent factor in a disentangled representation,
it corresponds to changes in only one generative factor

» For example, in the above 3D image , change z corresponding
to wall colors, image remains same, and only background

changes.




Why disentangled representations

» generalize better to unseen situations: useful in zero-shot or
knowledge transfer

» boost Al performance: (Lake 2016)



B—VAE

» generative model to learn a disentangled z in an unsupervised
manner

» no prior information regarding number of factors, or
correspondence



Method
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Given dataset D = {X, V, W}

images x € RN

conditionally independent facotrs v € RX

conditionally dependent factors w € R"

these factors are independent log(p(v|x)) = >, logp(v|x)

assumption: p(x|v, w) = Sim(v, w), where Sim is the true
simulator that generates images given v, w



Goal

Learn a joint distribution of p(x, z) where z € RM, M > K, such
that

p(x12) ~ p(x|v, w) = Sim(v, w) (2)

Maximize the marginal log likelihood of observed data x:
maxg Ep,(2)[Po(x|Z)] (3)
Posterior of the inferred latent factors z:
qy(2|x) (4)

Goal is to ensure g4(z|x) corresponds to v in a disentagled manner.



B—VAE

To achieve disentanglement or statistical Independence, set the
prior to be an isotropic Gaussian :

p(z) = N(0, 1) (5)
maX9,¢EXND Eq¢(z|x) /ogpg(x\z) (6)
s-t-Dri(qs(2|x)|p(2)) < e (7)

Rewrite as Lagrangian under the KKT conditions:

maxy o Ex0Eq, (21 logPo(x12) — B(Die(ae(2]x)[1p(2)) — €) (8)

maxy o Ex Eq, (z1x)logpo(x|2) — (D (au(21x) 1p(2))  (9)



Trade off

» Term 1 encourages better representations for Reconstruction
fidelity

» Term 2 or high beta values try to make the dimensions as
independent of each other as possible



Likelihood is a poor metric to measure disentanglement

» Disentangled representations emerge when the right balance is
found between reconstruction cost as regularisation and latent
channel capacity restriction (8 > 1).

» [ > 1 can lead to poorer reconstructions due to the loss of
high frequency details when passing through a constrained
latent bottleneck.

» need of a new metric to measure disentanglement



New Disentanglement Meitrc

» disentangled must be interpretable: can generate images of
small, green apples, and large, green apples by varying the
small latent

» independence can be obtained using PCA or ICA, but not
interpretable!

» cross correlation is not a good metric

» target is to measure both Independence and interpretability



Disentanglement Meitrc

» we have labels of the generative factors v € V for some
examples

» Choose an independent factor randomly y ~ Unif[1,..., K]

» For a batch of L samples

>

sample two sets of latent representations v ; and vy

enforcing [v1 ]k = [v2,]« if kK =y the value of the factor is
fixed

Get x1; ~ Sim(v1 1) then infer z; ; = p(x1,/) using encoder

q(z|x) ~ N(p(x),0(x))
similarly for the second batch vy
zb. . = |z1, — z2| the linear difference between the two latent

1
take average across the batch z5, . = T S (2).).and

p(y|z5%) , this score is disentanglement metric



Disentanglement Metric

» accuracy of this classifier over multiple batches is used as
disentanglement metric score.

> p(y|z5) : linear classifier with low VC-dimension



Experiments
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Experiments: Simulation Dataset

» 2D shapes

» Cartesian product of the shape and four independent
generative factors defined in vector graphics: position X (32
values), position Y (32 values), scale (6 values) and rotation
(40 values over the 27 range.



Experiments

Model Disenta.nglement
metric score
Ground truth 100%

Raw pixels 45.75 + 0.8%
PCA 84.9 +0.4%

ICA 42.03 £+ 10.6%
DC-IGN 99.3 +0.1%
InfoGAN 73.5 +0.9%
VAE untrained 44.14 + 2.5%
VAE 61.58 +0.5%
B-VAE 99.23 + 0.1%

Disentanglement Metric Score
(normalised)

Original

3 (normalised)

100
Size of z

Figure 6: Disentanglement metric classification accuracy for 2D shapes dataset. Left: Accuracy for
different models and training regimes Right: Positive correlation is present between the size of z and
the optimal normalised values of 3 for disentangled factor learning for a fixed 3-VAE architecture. 3
values are normalised by latent z size m and input x size n. Note that 3 values are not uniformly
sampled. Orange approximately corresponds to unnormalised 3 = 1. Good reconstructions are asso-
ciated with entangled representations (lower disentanglement scores). Disentangled representations
(high disentanglement scores) often result in blurry reconstructions.



Experiments
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Experiments
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Conclusion

» reformulated the standard VAE framework as a constrained
optimisation problem with strong latent capacity constraint
and independence prior pressures.

» covers a wider range of factor values and is disentangled more
cleanly than other benchmarks, all in a completely
unsupervised manner



| adder Variational Autoencoders

Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Sgren Kaae
Sgnderby, Ole Winther



Motivation

» hierarchies of conditional stochastic variables

» structured inference model using the same top-down
dependency structure both in the inference and generative

models.
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| adder VAE

» VAEs and LVAEs simultaneously train a generative model
po(x,z) = py(x|z)pg(z) for data x using latent variables z
» inference model g4(z|x)

> variational lower bound to the likelihood pg(x) = [ pg(x, z)dz.



VAE: generative model

L-1

po(2) = po(z1) | | po(zilzita) (10)

=1
po(zi|zig1) = N (zilwy i(2iv1), 05 i(2i41)) s po(2L) = N (2.[0, 1)
(11)
po(x|z1) = N (x|p,0(21), 05 0(21)) or Py(x|z1) = B (x|, 0(21))
(12)

» p indicates generative model parameters, g indicates inference
model parameters

» observation models is matching either continuous-valued
(Gaussian N\) or binary-valued (Bernoulli B) data

» The hierarchical specification allows the lower layers of the
latent variables to be highly correlated



VAE inference model: bottom-up

L
qs(z|x) = go(z1|x) | [ g(zilzi-1)
i—2

9o (21]x) = N (211141 (x), 031 (x))

ae(zilzi-1) = N (zilpqi(zi-1), 0% (zi1)) , i =2...

d(y) =MLP(y)
p(y) =Linear(d(y))
o?(y) =Softplus(Linear(d(y))) ,

L.



| adder VAE

d, =MLP(d,_1)
fiq.i =Linear(d;),i=1...L

63’,- =Softplus(Linear(d;)),i=1...

where dg = x. Recursive downward pass:
L—1

qs(z]x) =q¢(zL|x) | | 9s(zilzis1)
=1

o 1
e o
_ _/A‘cw&;,,2 + 'upa’o-f:lz
Hai = 6;? + 0;,,2
Q¢(Z;’-) =N (Zi‘ﬂq,ia"'é,i) )

N 2 _ a2
where p1g1 = fig and o | =6y .

L

N =
o O
N N’

(21)

(22)

(23)

(24)

(25)



| adder VAE

» precision-weighted combination of

> [ig and 67 carrying bottom-up information and
> 1, and 0,2) from the generative distribution carrying top-down

prior information.
> [iy and 63 as the approximate gaussian likelihood that is

combined with a gaussian prior p, and 0[2) from the generative
distribution.

» Together these form the approximate posterior distribution
qo(z|z, x) using the same top-down dependency structure
both in the inference and generative model.



Warm up from deterministic to VAE

» The variational regularization term causes some of the latent
units to become inactive during training

» the approximate posterior for unit k, q(zj k| ... ) is regularized

towards its own prior p(z; k| ...), a phenomenon also
recognized in the VAE setting

» presumably trapped in a local minima or saddle point at

KL(qi k|pi.k) =~ 0, with the optimization algorithm unable to
re-activate them.



Warm up from deterministic to VAE

initializing training using the reconstruction error only
(corresponding to training a standard deterministic auto-encoder),
and then gradually introducing the variational regularization term:

L(0,¢; x)1T = —BKL(qg(z|x)||ps(2)) + Eqy (z|x) [log po(x|2)], (26)

where [ is increased linearly from 0 to 1 during the first N; epochs
of training.



Experiments

» Datasets: MNIST, Omniglot, NORB
» [ =5 with sizes 64,32,16, 8,4
» MNIST: bernoulli with sigmoid output layer



MNIST

_94 - e VAE = VAE+BN+WU
= VAE+BN = LVAE+BN+WU
200 800 1400 2000
Epoch

Figure 2: MNIST train (full lines) and test
(dashed lines) set log-likelihood using one im-
portance sample during training. The LVAE im-
proves performance significantly over the regular
VAE.



Experiments: MNIST

train test test
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Figure 3: MNIST log-likelihood values for VAEs and the LVAE model
with different number of latent layers



Experiments: MNIST

! VAE VAE+BN VAE+BN+WU  LVAE+BN+WU logK L(q|p)
Rl | | | Ie— 0.8
G| | [ | I [ Se— | Woo
z=3’ | l_ | I I H —0.8
1=2 —1.6

24
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=1 = —4.0
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log KL(q|p) for each latent unit is shown at different training epochs.
Low KL (white) corresponds to an inactive unit.



Experiments: MNIST

< log p((2))
VAE 1-layer + NF [17] -85.10
IWAE, 2-layer + IW=1 [2] -85.33
IWAE, 2-layer + IW=50 [2] -82.90
VAE, 2-layer + VGP [20] -81.90
LVAE, 5-layer -82.12
LVAE, 5-layer + finetuning -81.84
LVAE, 5-layer + finetuning + IW=10 -81.74




Experiments:

MNIST

VAE VAE VAE LVAE
+BN +BN +BN
+WU +WU
OMNIGLOT
64 —111.21 —-105.62 —104.51 —
64-32 —110.58 —105.51 —-102.61 —102.63
64-32-16 —111.26 —106.09 —102.52 —102.18
64-32-16-8 —111.58 —105.66 —102.66 —102.21
64-32-16-8-4 | —110.46 —105.45 —102.48 -102.11
NORB
64 2741 3198 3338 —
64-32 2792 3224 3483 3272
64-32-16 2786 3235 3492 3519
64-32-16-8 2689 3201 3482 3449
64-32-16-8-4 2654 3198 3422 3455




Experiments: MNIST

- VAE = VAE+BN+WU
-~ VAE+BN —— LVAE+BN+WU

i=1 i=2 i=3 i=4 i=5

Figure 5: Layer-wise K L[q|p| divergence going
from the lowest to the highest layers. In the VAE
models the KL divergence is highest in the lowest
layers whereas it is more distributed in the LVAE
model



Experiments: MNIST

VAE VAE VAE LVAE
+BN +BN+WU +BN+WU

Sig

© 00 90 Utk WO

Figure 6: PCA-plots of samples from ¢(z;|z;—1)
for 5-layer VAE and LVAE models trained on
MNIST. Color-coded according to true class label

PCA plots of samples from q(z;|z;_1) for 5-layer VAE and LVAE models
trained on MNIST



Conclusion

» new inference model for VAEs combining a bottom-up
data-dependent approximate likelihood term with a prior
information from the generative distribution

» learns a deeper and qualitatively different latent representation
of data

» this parameterization makes the optimization easier since the
inference is simply correcting the generative distribution
instead of fitting the two models separately.



CausalVAE: Disentangled Representation Learning
via Neural Structural Causal Models

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye
Hao, Jun Wang



Motivation

» learning disentangled representations

» assumption: the data is indeed generated by countable
independent factors

» this paper: the independent factors are causally related

Figure 1: A swinging pendulum: an illustrative example

pendulum angle and light position are the causes of (/, x) of shadow



Advantages of causal disentanglement

v

above are not independent, indepndence based
disentanglement cant extract these factors

will still disentangle light and pnedulum?
generating counterfactual data— do operation

example: do(shadow = 0)



Structural Causal model

>
>

>

a causal model is an ordered triple (¢, X, F) ,

where € : exogenous variables whose values are determined by
factors outside the model:

X : set of endogenous variables whose values are determined
by factors within the model;

F : structural equations that express the value of each
endogenous variable as a function of the values of the other
variables in X and €

Xi — fi(Xpa,-a 6i)



Causal VAE

» Encoder x — z
» SCM Layer
» Decoder z — x



Causal VAE: Structural Causal Model

» Step 1: identify the exogeneous factors €

» step 2: A "Causal Structure Layer’ that relates the exogeneous
factors

» *the causal structure is learnt, not prespecified*



Method: Causal VAE: Structural Causal Model Layer

vVvyvyvyVvyYyy

v

Consider a Linear Structural Causal Model
disentangled factors correspond to u

and the causal graph among them corresponds to A
z=ATz4+e=(1-A")le

z € R" corresponding to n concepts

e = N(0,/)

For example, chain graph z; — zo — z3

Zq 0 0 Of |z €1
Zy | = 1 0 0 Zy| + €2
Z3 0 1 0 Z3 €3



Causal VAE: Step 1: z latent representations

z=A"z+e=(1-A")te (27)
e ~N(0,1), (28)

» 77 Only Markov Equivalence Graph if the variables are
continuous, and the equations are linear with Gaussian
(normal, or bell-shaped) errors.



Causal VAE: Step 2: Structural Causal Model Layer

> z; = gi(Ai © zi;m;) + €

» Mask layer that mimics generating children from parents



Causal VAE
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Generative Model

» x € RY known concepts u € R", e € R”

> z=(/ - A")le= Ce

» Conventional VAE: py(x,z) = po(x|z)p(2)

» Conditional VAE: py(x, z|u) = pg(x|z, u)p(z|u)
» Causal VAE: py(x, z, €|u) = py(x|e, z, u)p(z, €|u)



Generative Model

» Decoder: f(z)
» Encoder: h(x, u)

po(x|z; €,u) = pa(x|z) = pe(x —1(2)) (29)
(2, €[x, u) = q(z|€)gc (€ — h(x, u)), (30)
x="f(z)+&, €e=h(xu)+¢, (31)

» £ and ¢ are the vectors of independent noise with probability
densities ps and g¢.

» When £ and ¢ are infinitesimal, the encoder and decoder can
be regarded as deterministic ones.



Generative Model

v

the joint prior pg(€, z|u) for latent variables z and € as
Po(€, z|u) = pe(€)po(z|u), (32)

pe(€) = N(0,1)
the prior of latent endogenous variables pg(z|u) is a factorized

Gaussian distribution conditioning on the additional
observation u, i.e.

po(z|u) = N (A (ui), A3(ur)), (33)

A1 and Ap are an arbitrary functions. let A;(u) = u and
Ao(u) = 1.



Training the Generative Model

qu[log po(X|u)] > ELBO = qu [E672~q¢[|0g pg(X|Z, €, u)] - D(q¢(€7 lea u)||p9(e, Z|u))]7

(34)

dp (€, 2%, u) = gy (€lx, u)d(z = Ce) = gp(z|x, u)d(e = C1z), (35)

ELBO = qu [qub(z'x,u) [|Og pe(XlZ)]— (36)

D(qg(€lx; u)[|pe(€)) — D(qy(z[x, u)||pe(z]u))]- (37)




Additional Constraints

lo = Eqyllu — o(ATu)[3 < 1.

n
I = Bzngy > llzi — 8i(Ai 0 zm)|” < k2,
i=1
DAG constraint:
HA)=tr((l+AcA)")—n=0.
Training Loss Function:

L =—ELBO + aH(A) + Bly + vIm,

(38)

(39)

(40)

(41)



Experiments

» Two datasets: Synthetic (Pendulum) and CelebA
» Pendulum:

» 3 entities (pendulum, light, shadow)
» 4 concepts ((pendulum angle, light angle) — (shadow
location, shadow length)).

» CelebA

» 4 causally related concepts (gender, smile, eyes open,mouth
open), where gender and smile cause eyes open, and smile
causes mouth open.

» Evauation Criteria:

» MIC: Maximal Information Criterion (MIC)
» Total Information Criterion (TIC)



Results

CausalVAE DC-IGN B-VAE Causal VAE-unsup LadderVAE

Metrics(%)  MIC TIC MIC TIC MIC TIC MIC TIC MIC TIC

Pendulum 96.3+36 89.0-29 61.84s87 48.1+73 22.6+46 12.5+22 21.2+14 12.0+10 224431 12.8+12

CelebA 83.7+62 T71.6+72 78.8+109 66.1+121 22.5+12 992412 272453 14.6+42 235430 10.3+16




Intervention Experiments

E----->------------------>-----ﬂi L ’ w - v v > F-—-----———-----—----—-----—---:
Set z-causes = 0 ‘ 1 1 x l z (pendulum angle) = 0 ‘ @ l 1 Set z-causes =0
L e . 2R I
z-effect changed Vs e 1 z (light position) =0/ Ve \ \ z-effect changed
------------------------------- v & 4 v R L v . -->------------>----->>----->-:
J / \ \ z (shadow length) = 0 / V4 1 ‘
| zcauses | , o . . - T
Not influenced | e ) )  z(shadowposition) =0/ 1 \ Set z-effect =0
4 : — = = - = - o
X : i All concepts
Set z-effect = 0 { { x_ L True x ! { l_ L | Not changed
777777777777777777777777777777 (a)CausalVAE (b) DC-IGN

Figure 3: The results of Intervention experiments on the pendulum dataset. Each row shows the result
of controlling the PENDULUM ANGLE, LIGHT ANGLE, SHADOW LENGTH, and SHADOW LOCATION
respectively. The bottom row is the original input image.



Intervention Experiments

Intervene GENDER
EYES
Changed @

Intervene SMILE

MOUTH
Changed
GENDER
not
Influenced

Figure 4: Results of CausalVAE model on CelebA. The controlled factors are GENDER, SMILE, EYES
OPEN and MOUTH OPEN respectively.

Ay



Conclusion

» learning disentangled representations of causally related
concepts in data

» allows intervention to generate counterfactual outputs as
expected according to our understanding of the causal system.



