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Key Idea
Learning a Discrete Graph Structure along with GCN parameters for
semi supervised node classification

not learn a graph that is similar to training graphs, rather learn a graph as
a means to perform well on classification problem when input is not a
collection of graphs

Learning Discrete Structures for Graph NeuraPresenter: Arshdeep Sekhon https://qdata.


https://qdata.github.io/deep2Read

Ways to incorporate Relational Structure

@ k-Nearest Neighbor between the datapoints
@ kernel matrix between data points
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Ways to incorporate Relational Structure

@ k-Nearest Neighbor between the datapoints

o (-) graph learning and end task disjoint
o (-) lots of choices: k, similarity metric

@ kernel matrix between data points
o (-) dense dependency structure
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N nodes

M edges

Binary Adjacency matrix A

Denote by Hy the space of all adjacency matrices (2N2)
L=D-A

inputs: X € Xy C RNX" where n is the number of node features

A labeling function y : V' — ) where Y is the set of labels
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fu s Xy x Hy — YN (1)
L, A = 3 U(X, As ) + Qw) (2)
VevTram

w € RY are the parameters of f,,, Q is a regularizer, £ : Y x Y — R1(?) is
a loss function.
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Bilevel Programs

o Bilevel programs are mathematical programs with optimization
problems in their constraints.

@ hierarchical optimization problems where the feasible region of the
so-called upper level problem is restricted by the graph of the solution
set mapping of the lower level problem

min F(0, wy) s.t. wy € argmin L(w, 6) (3)

0,wy
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Motivation: Hyperparameter Optimization

Two levels:
@ Nesting two search problems:

e hyperparameter optimization: find a good hypothesis space
e Supervised training: learn a good hypothesis in a hypothesis space

—— Train errors
—— Validation error

lou3
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Bilevel Programming Objective

min F (60, wp)s.t.wy € argmin L(w, 0) (4)

07W9

Issue: closed form solution to inner objective not available
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Formulation: Jointly Learning Structure and Parameters

o Find A € Hy to minimize generalization error on a validation set V,
o F(WA,A) = ZVGVVa/ E(fwA(X7A)vayv)
@ Here, wy is the minimizer or (argmin) for L(w, A) for a fixed
adjacency matrix A.

Lw A= 3 UFul(X. AN ) +Qw) (5)

VEVTrain
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Formulation: Jointly Learning Structure and Parameters

o Find A € Hy to minimize generalization error on a validation set V,
o F(WA,A) = ZVGVVaI E(fWA(X7A)Va.yV)
@ Here, wy is the minimizer or (argmin) for L(w, A) for a fixed
adjacency matrix A.

Lw A= 3 UFul(X. AN ) +Qw) (5)

VEVTrain

Final Objective Mixed Integer Bilevel Programming Problem

min F(WA,A) = Z f(fwA(XaA)Va)/v)

wp,A
’ vE Vv

Wa € arg min L(w, A) Z Ut (X, A)v, yv) + Q(w)

vEVTrain

v
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o Intractable to solve for even small graphs(2")

@ Optimizing A: continuous + discrete :
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o Intractable to solve for even small graphs(2")

@ Optimizing A: continuous + discrete :
o Continuous relaxation
e maintain a generative model for the graph structure : change A
to parameters of the generative distribution
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Model A as a graph generative distribution

A ~ Ber(0) where § € Hy , Hn = ConvexHull(Hy)

@ By modeling all possible edges as a set of mutually independent
Bernoulli random variables with parameter matrix 8 € Hy we can
sample graphs as Hy > A ~ Ber(0).

@ The resulting bilevel problem can be written as

minaeﬂN IE’ANBer(G) [F(W97 A)] (6)
such that wp = argminy, Ea_per(s) [L(w, A)] . (7)

@ both inner and outer now continuous functions of 8

@ Still computationally expensive: No inner closed form solution(non
. . 2
convex), intractable exact expectations (2V°)
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GCN during testing

fir?(X) = Ea([fw(X, A)]) = D Po(A)fu(X, A) (8)
AeHy

2 . .
Intractable (2V"), so compute empirical estimate:

S
Fu(X) = % D ful(X,A) (9)
i=1
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Advantages of formulating as a graph generative model

@ sparse

@ can be interpreted proabilistically
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Optimizing the objective: Hypergradient Descent

A. Inner Objective

@ Hypergradient: Used for hyperparameter optimization, treat graph
generation 6 as a hyperparameter
@ the expectation

Ep~per(o) [L(W, A)l = Y Po(A)L(w, A) (10)
AcHy

is composed of a sum of 2N? terms, which is intractable even for
relatively small graphs.

@ choose a tractable approximate learning dynamics ® such as
stochastic gradient descent (SGD),

Wo.t+1 = ¢(W0,t7At) = Wyt — VtvL(We,hAt)a (11)

where 7; is a learning rate and A; ~ Ber(#) is drawn at each iteration.
® Let wy 7 be an approximate minimizer of E[L] (where T may depend
on 0).
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Optimizing the objective: Hypergradient Descent

A. Outer Objective

an estimator for the hypergradient VyE s per(9) [F]-

VoE[F(wy 1,A)] =E[VoF(wp,1,A)] =
E [OwF(wy, T, A)Vowy 1 + OaF (wp, 7, A)VeA], (12)
where we can swap the gradient and expectation operators since the

expectation is over a finite random variable, assuming that the loss
function F bounded. The second step is by the chain rule.
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Optimization

Algorithm 1 LDS

1: Input data: X, Y, Y'[, A]

2: Input parameters: 7, 7[, k]

3: [A + kNN(X, k)] {Init. A to kNN graph if A = 0}
4: 0+ A {Initialize Py as a deterministic distribution}
5: while Stopping condition is not met do

6: t«+0

7:  while Inner objective decreases do

8: A ~ Ber(0) {Sample structure}
9: wo t+1  Pe(wo,t, Ar) {Optimize inner objective}
10: t—t+1
11: ift =0 (mod ) or 7 = 0 then
12: G « computeHG(F,Y, 0, (w9,i)§=t—f)
13: 0 < Projy, [0 —nG]  {Optimize outer objective}
14: end if

15:  end while
16: end while
17: return w, Py {Best found weights and prob. distribution}
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Model Summary

Initialize Sample graphs Compute gradients of and Compute hypergradients
Data points parameters update GCN parameters and update 0 of graph generator
A~Py Validati
00 o Gmaph —§ o P W= DAY = W VL WA Vo E[F(wy,, 0)] alidation

generator:
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Figure 1. Schematic representation of our approach for learning discrete graph structures for GNNs.
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Experiments 1: Graphs with Missing Edges

@ All GCN 16 hidden units + RelLU
@ For LDS, split validation set for validation vs outer stopping sets

@ available tensor flow implementation
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Experiments 1: Graphs with Missing Edges

Baselines
o GCN

@ GCN-RND: add randomly sampled edges at each optimization of a
vanilla gen?

Accuracy
<
5

—— LDS (r=0)

—— GCN —+— GCN

7 —+— DS (t=5) | 65.0 —— LDS (r=5) —— LDS (t=5)
—— GCN-RND —f— GCN-RND | 661 v —— LDS (t=20)
651 62.5
25 50 75 100 25 50 75 100 25 50 75 100
Retained edges (%) Retained edges (%) Retained edges (%)

Figure 2. Mean accuracy = standard deviation on validation (early stopping; dashed lines) and test (solid lines) sets for edge deletion

scenarios on Cora (left) and Citeseer (center). (Right) Validation of the number of steps 7 used to compute the hypergradient (Citeseer);
7 = 0 corresponds to alternating minimization. All results are obtained from five runs with different random seeds.

to show adding random edges does not improve generalization
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Experiments 2: Semi Supervised Classification

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1(1.3) 933 (0.5 855(1.5) 622(0.0) 60.8(0.0) 427(1.7) 373(0.7)
Linear SVM 93.9(1.6) 90.6 (4.5 87.1(1.8) 583(0.0) 589(0.0) 403(1.4) 357(L5)
RBF SVM 941(2.9) 91.7(3.1) 869(32) 602(0.0) 59.7(0.0) 41.0(1.1) 383 (10)
RF 93.7(1.6) 921 (L7) 83.1(26) 60.7(0.7) 58.7(0.4) 40.0(1.1) 37.9(0.6)
FFNN 80.7(1.9) 929(L2) 36.3(103) 567(1.7) 56.1(1.6) 38.6(1.4) 33.2(13)
LP 89.8(3.7) 76.6(0.5 91.9(3.1) 232(6.7) 37.8(02) 353(0.9) 14.1(2.1)
ManiReg 90.5(0.1) 81.8(0.1) 839(0.1) 67.7(1.6) 623(0.9) 46.6(1.5) 34.2(11)
SemiEmb 91.9(0.1) 89.7(0.1) 909(0.1) 68.1(0.1) 63.1(0.1) 46.9(0.1) 34.1(1.9)
Sparse-GCN 63.5(6.6) 72.5(29) 134(L5) 33.1(09) 30.6(2.1) 247(1.2) 23.4(1.4)
Dense-GCN 90.6 (2.8) 90.5(27) 35.6(21.8) 584(1.1) 59.1(0.6) 40.1(1.5) 345 (0.9)
RBF-GCN 90.6(2.3) 92.6(2.2) 708(55) 58.1(1.2) 57.1(1.9) 393(14) 337(14)
kNN-GCN 932(3.1) 938(14) 913(0.5 683(1.3) 665(04) 41.3(0.6) 37.8(0.9)
kNN-LDS (dense) 97.5(1.2) 94.9(0.5) 92.1(0.7) 709(13) 709 (1.1) 45.6(2.2) 38.6(0.6)
kNN-LDS 97.3(0.4) 944 (19) 925(0.7) 715(L1) 715(0.8) 46.4(1.6) 39.7 (1.4)
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Experiments 3: optimization Dynamics

@ capture a useful distribution rather than pick exact links

10v 10 10v
—— True links (3 node)
10 107 { — same class
— Diff {
102 102 Different classes
—— Unknown classes
LA ——] 10 — -
. -~
True links (5 nodes) 10 —— True links (1 node) -|
—— Same class —— Same class
—— Different classes 10-5 —— Different classes
~—— Unknown classes Unknown classes
107 106
0 250 500 750 250 500 750 250 500 750

Inner optimization steps Inner optimization steps Inner optimization steps

Figure 3. Mean edge probabilities to nodes aggregated w.r.t. four groups during LDS optimization, in logio scale for three example nodes.
For each example node, all other nodes are grouped by the following criteria: (a) adjacent in the ground truth graph; (b) same class
membership; (c) different class membership; and (d) unknown class membership. Probabilities are computed with LDS (7 = 5) on Cora
with 25% retained edges. From left to right, the example nodes belong to the training, validation, and test set, respectively. The vertical

gray lines indicate when the inner optimization dynamics restarts, that is, when the weights of the GCN are reinitialized.
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Figure 4. Normalized histograms of edges’ probabilities for the

Figure 5. Histograms for three Citeseer test nodes, missclassified
same nodes of Figure 3.

by KNN-GCN and rightly classified by kNN-LDS.
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Related Work: Graph Synthesis and Generation

@ ER model/ or other graph generative models: not learn a graph that is
similar tot raining graphs, rather learn a graph as a means to perform
well on classification problem when input is not a collection of graphs

e NRI: limited to dynamic interaction systems, unsupervised(no y)

@ No true graph available

Learning Discrete Structures for Graph NeuraPresenter: Arshdeep Sekhon https://qdata.


https://qdata.github.io/deep2Read

Related Work: Link Prediction

@ Type 1: only link prediction from node similarity

@ Type 2: Statistical Relational Learning: intractable, structure and
parameter learning steps are separate
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Conclusi Drawbacks

not scalable
only transductive setting

no extra prior on graphs: connected

?? True edges not evaluated
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Extra Algorithm

Algorithm 2 LDS (extended)

WS A o

: Input data: X, Y, Y[, A]
Input parameters: 7, 7[, k]
[A + kNN(X, k)] {Init. A to kNN graph if A =0}
f— A {Initialize Py as a deterministic distribution }
while Stopping condition is not met do
t+0
while Inner objective decreases do
A; ~ Ber(0) {Sample structure }
we, 141 — Py(we,i, Ar) {Optimize inner objective}
tet+1
if t = 0 (mod 7) or 7 = 0 then
A; ~ Ber(0)
p e OuF(wa e, Ar)
G — aAF(T.UQ_i,At)
fors =t — 1downtot — 7 do
A ~ Ber(6)
p << st (w3.51 As)
G+ G+ pEs (T-UG.sa A-s)
end for
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