
Natural Language Processing (Almost) from Scratch

Collobert et al., 2011

presentation by Jack Morris
12/1/19

https://qdata.github.io/deep2Read/



Section 1 Introduction

Section 2 The Benchmark Tasks

Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



1.1 - Background
Current NLP representation:

1. Task-specific representations
2. Simplified, intermediate representation based on

a. Syntactic information
b. Semantic information

3. Benchmark corpora, manually annotated, to evaluate performance

Drawback:

1. Representation not generally applicable across different corpora
2. Reveals little about how to improve future natural language 

representation in general



1.2 Goal
Goal:

- Improve on benchmark without task-specific engineering

Proposing:

● Intermediate representation extracted from large unlabeled dataset
○ using a single learning system.

● More general than any benchmarks
○ since no large body of linguistic knowledge is involved.

● Approach called “almost from scratch”



Section 1 Introduction

Section 2 The Benchmark Tasks
Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



Section 2: Benchmark Tasks
● Part-Of-Speech Tagging (POS)
● Chunking
● Named Entity Recognition (NES)
● Semantic Role Labeling (SRL)

For each task, the state-of-the-art system that did not use external labelled data 
was chosen as the benchmark system in order to have a fair comparison based 
on the quality of a system and not the data used for the system. 

As a task becomes more complex, more engineered features are needed to train 
on. 



2.1: Part-Of-Speech Tagging
● Label each word in a text with its syntactic role

○ “He sat on the desk” would be labelled as singular noun, past tense verb, preposition, article

● Benchmark system: Toutanova et al. (2003) 
○ 97.24% per-word accuracy
○ Used maximum entropy classifiers and inference in bidirectional dependency network

● Dataset: Wall Street Journal data



2.2: Chunking (Shallow Parsing)
● Label segments of a sentence with syntactic constituents (parts of a sentence 

that act as a single unit), then label words as in a chunk or begin a chunk
○ “The tall basketball player jumped over his smaller opponent” would have three chunks, two 

noun-phrases and a verb-phrase. 

● Benchmark system: Sha and Pereira (2003)
○ 94.29% F1 Score
○ Used second-order random fields and a variety of features such as part-of-speech tags

● Dataset: CoNLL 2000



2.3: Named Entity Recognition
● Tag elements in a text with a category

○ “Kevin lives in Seattle” would be labelled as person, other, other, location. 

● Benchmark system: Ando and Zhang (2005) 
○ 89.31% F1 Score
○ Trained a model on NER and two auxiliary unsupervised tasks while permoign Viterbi 

decoding when testing

● Dataset: CoNLL 2003



2.4: Semantic Role Labeling
● Assigns a role to each syntactic constituent in a text

○ Typically assigns roles between ARG0 and 5 to each argument of a verb
○ “John ate the apple” would be tagged as ARG0, verb, ARG1. 

● Benchmark system: Koomen et al. (2005) 
○ 77.92% F1 Score
○ Used Winnow-like classifiers along with a decoding stage

● Dataset: CoNLL 2005



Section 1 Introduction

Section 2 The Benchmark Tasks

Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



Section 3: The Networks
● Old approach: hand-design task-specific features, feed to SVM

○ Feature selection is task-dependent
○ Complex feature have high computational cost

● New approach: pre-process as little as possible, train NN in E2E fashion
○ NN learns feature extraction
○ Features automatically trained to be relevant to task



3.1: Notation
● Think of NN as a composition of functions

● Given matrix A, [A]i,j is value at row i, column j
● Window of size dwin around column i

● Sequence of {x1,x2,...,xT} written as [x]1T



3.3.1: Window Approach



HardTanh Layer



3.3.2: Sentence approach



3.3.2: Sentence approach
● For SRL, add features for relative distance to verb considered and word being 

tagged



3.4: Training
● Word-level Log-likelihood (WLL): Cross-entropy loss, we have covered that 

before
● Sentence-level Log-likelihood (SLL): Consider which “tag paths” are valid

○ Construct transition matrix representing validity of jumping from tag i to 
tag j in successive words. This is trained along with network.

○ Add transition scores, network scores when scoring tag paths.
● Trained using Stochastic Gradient Ascent



3.5: Supervised Training Results



3.5: Supervised Training Results



3.5: Supervised Training Results



Section 1 Introduction

Section 2 The Benchmark Tasks
Section 3 The Networks

Section 4 Lots of Unlabeled Data
Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



Section 4: Lots of Unlabeled Data
● We want word embeddings with more information than the ones in the table 

of the SRL neural network in 3.5
● We will see how to improve our poor embeddings using large unlabeled data 

sets
● New embeddings to make new word lookup tables for our networks



4.1: Data Sets
● Entire English Wikipedia

○ Removed all paragraphs non-Roman characters and markups
○ Tokenized, 631 million words
○ Dictionary of 100,000 words from Wall Street Journal

● Reuters RCV1 data set
○ 221 million words
○ Extended dictionary to 130,000 words adding the 30,000 most common words in Reuters
○ We can determine if adding this data set can yield improvements 



4.2: Ranking Criterion vs. Entropy Criterion
● Used data sets to train language models that output scores for text

○ Most trainable parameters are in the lookup tables

● Previous works: Bengio and Ducharme (2001), Schwenk and Gauvain (2002)
○ Estimate the probability of a word given previous words in the sentence
○ Suggests cross-entropy criterion
○ Computing normalization term is demanding given large dictionary
○ Neither work gave significant word embeddings
○ We can’t really use the 0.2 bit/character entropy difference between humans and n-gram 

models to learn grammar
○ Entropy criterion lacks dynamical range because its value is mostly determined by the most 

frequent phrases
○ To learn syntax, rare but legal phrases are no less significant than common phrases



4.2: Ranking Criterion vs. Entropy Criterion
● They propose a pairwise ranking approach

○ We do not want to emphasize a common phrase over a rare but legal phrase
○ Window network approach

● Okanohara and Tsujii (2007) used a similar approach but with binary 
classifications and a kernel classifier, not with word embeddings

● Smith and Eisner (2005), “negative” neighborhood



4.3: Training Language Models
● Trained on SGD of the ranking criterion, sampling sentence-word pairs each 

iteration
● Cannot tune global hyperparameters
● Initialize networks with embeddings from earlier networks
● Train a succession of networks using increasingly large dictionaries, each 

network being initialized with the embeddings of the previous network (sizes 
and switching times arbitrary)

● Breeding
○ Child networks initialized with parent’s embeddings and different training parameters based on 

past generation’s success (learning rate, word embedding dimensions, # of hidden 
dimensions, etc.)



4.3: Training Language Models
● LM1

○ Window size 11, hidden layer with 100 units
○ Trained on Wikipedia with dictionary sizes of 5k, 10k, 30k, 50k, and 100k most common Wall 

Street Journal words
○ 4 weeks

● LM2
○ Initialized with LM1 embeddings, same dimensions as LM1
○ Trained for another 3 weeks on Wikipedia+Reuters with 130k-word dictionary



4.4: Embeddings (Before)



4.4: Embeddings (After - LM1)



4.5: Semi-supervised Benchmark Results
● Semi-supervised learning

○ Ad hoc
○ Self-training (pseudo-labels)
○ Parameter-sharing



4.6: Ranking and Language
● Syntax is a prerequisite for semantic role labeling

○ Existing semantic role labeling systems use parse trees, parsers know prior info about syntax
○ They can’t use parse trees with unlabeled data

● Difficult to see how ranking criterion can obtain this information
● Ranking similar to operator grammars (Harris, 1968), which defines a ranking 

criterion when testing if two sentences are semantically related by a 
transformation

● They conclude that ranking criterion has the potential to extract strong 
syntactic and semantic information

● Our language models are too restrictive for our goals



Section 1 Introduction

Section 2 The Benchmark Tasks

Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning
Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



5. Multi-Task Learning
● Features trained for one task can be useful for related tasks

○ Already seen this with unsupervised word embeddings
○ Has since become very popular in Computer Vision and RL

● Can be seen as a form of regularization



5.1 Joint Decoding versus Joint Training
Joint Decoding

● Probabilistic framework for inference across models
● Used in multi-modal domains like speech recognition



5.1 Joint Decoding versus Joint Training
Joint Training

● One network with multiple 
outputs

○ Need labels for each task for every 
input

○ Loss as linear combination of tasks
● What to do when labels 

correspond to different training 
sets?

○ Iterative gradient updates
○ Theoretically unstable, but works in 

practice



5.2 Multi-Task Benchmark Results
● In this work specifically:

○ Shared lookup tables
○ Shared first linear layer in window architecture, first conv layer in sentence architecture
○ Alternate between tasks for gradient updates



5.2 Multi-Task Benchmark Results



Section 1 Introduction

Section 2 The Benchmark Tasks

Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



● Results so far have been (almost*) from scratch, as originally intended
○ *almost: since we preprocessed the data into raw words-- if we really worked from scratch, we 

would start from characters (or pictures of characters!)
● This has disregarded a large amount of linguistic knowledge
● We’ve shown that, by using large unlabeled datasets, we can still get near 

state-of-the-art performance
● So how much better can we get if we increase “task-specific engineering” 

using known techniques from NLP literature?

Section 6: The Temptation



● Statistically, suffixes are strong predictors of word syntactic function
● This is useful for part-of-speech taggers (the “POS system”)
● Let’s add discrete word features that represent the last two characters of each 

word
○ Size of suffix dictionary: 455

● Improves POS tagging score from 97.20 to 97.29 + (0.09)

6.1: Suffixes



● A “gazetteer” is a dictionary containing well-known named entities
● As you might imagine, this is useful for the named entity recognition (NER) 

task
● Four gazetteer categories: (1) locations, (2) person names, (3) organizations, 

(4) miscellaneous
● Add 4 additional feature for each word that are “on” and “off” if the word is 

found in each of four categories
● Increases NER score from 88.67 to 89.59 (+0.92)

6.2 Gazetteers



● Cascading: using features outputted by one task as input for another task
● “Conventional NLP systems often use features obtained from the output of 

other preexisting NLP systems”

● Can we improve CHUNK and NER tasks by adding POS tags as features?
● Yes! Improvement on CHUNK from 93.63 to 94.32 (+0.69)

6.3 Cascading



● Ensemble models combine the predictions of multiple diverse models to 
predict an outcome

● Constructing ensembles of classifiers is the best way to trade computational 
efficiency for generalization performance

● Many NLP systems achieve state-of-the-art performance by combining the 
outputs of multiple classifiers

● Because neural networks are nonconvex, training runs with different 
initializations usually give different solutions

6.3 Ensembles



● Try ten training runs on each POS, CHUNK, NER task, with ten different 
initializations

● Voting leads to a small improvement (.1 to .3) in average network performance

● They also tried adding a linear layer to the outputs of the classifiers and 
training that way: this did not outperform the simple voting

● Performance variability among the networks is not very large, anyway

6.3 Ensembles [cont’d]



● Some past researchers have argued that syntactic parsing is necessary for the 
SRL (semantic role labeling) task

● So far, we’ve gotten close to state-of-the-art on SRL without parse trees at all 
😲

● Add parse tree features to the system: 
Increase score from 74.15 to 77.92 (+3.8%)

6.5 Parsing



● They created their word embeddings via language modelling, instead of using 
previously established algorithms (like “Brown clustering”)

● A natural question: how to these embeddings compare? Is one more useful 
than the other?

● Answer: the new word embeddings do better! (very slightly)

6.6 Word Features



● Implement a standalone version of the architecture and just try to get the best 
scores possible

● They engineered their system from scratch and it’s over 200x faster than the 
SOTA system and uses much less RAM

6.7 Engineering a Sweet Spot

wow



Section 1 Introduction

Section 2 The Benchmark Tasks

Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion
Section 8 Conclusion



Section 7: Critical Discussion
● Why abandon all the pre-existing knowledge of engineering NLP features and 

instead pursue end-to-end learning?
○ Task-specific features do not transfer well to other tasks → Cannot have a method that 

generalize well to all tasks.
○ Want something generalizable

● Why neural networks?
○ It’s able to learn hidden representation of words.
○ Learning algorithm scales linearly, which allows it to take advantage of hardware 

advancements.



Section 1 Introduction

Section 2 The Benchmark Tasks

Section 3 The Networks

Section 4 Lots of Unlabeled Data

Section 5 Multi-Task Learning

Section 6 The Temptation

Section 7 Critical Discussion

Section 8 Conclusion



Section 8: Conclusion
Contribution: 

● Multilayer neural network that can learn to handle a number of NLP tasks with 
both speed and accuracy.

● More broadly, an end-to-end learning system that can learn useful features 
from unlabeled data set instead of relying on engineered features.


