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1.1 - Background

Current NLP representation:

1. Task-specific representations

2. Simplified, intermediate representation based on

a. Syntactic information
b. Semantic information

3. Benchmark corpora, manually annotated, to evaluate performance
Drawback:

1. Representation not generally applicable across different corpora
2. Reveals little about how to improve future natural language
representation in general



1.2 Goal

Goal:
- Improve on benchmark without task-specific engineering
Proposing:

e Intermediate representation extracted from large unlabeled dataset
o using a single learning system.

e More general than any benchmarks
o since no large body of linguistic knowledge is involved.

e Approach called “almost from scratch”
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Section 2: Benchmark Tasks

Part-Of-Speech Tagging (POS)
Chunking

Named Entity Recognition (NES)
Semantic Role Labeling (SRL)

For each task, the state-of-the-art system that did not use external labelled data
was chosen as the benchmark system in order to have a fair comparison based
on the quality of a system and not the data used for the system.

As a task becomes more complex, more engineered features are needed to train
on.



2.1. Part-Of-Speech Tagging

e Label each word in a text with its syntactic role
o “He sat on the desk” would be labelled as singular noun, past tense verb, preposition, article

e Benchmark system: Toutanova et al. (2003)
o 97.24% per-word accuracy
o Used maximum entropy classifiers and inference in bidirectional dependency network

e Dataset: Wall Street Journal data



2.2. Chunking (Shallow Parsing)

e Label segments of a sentence with syntactic constituents (parts of a sentence

that act as a single unit), then label words as in a chunk or begin a chunk
o “The tall basketball player jumped over his smaller opponent” would have three chunks, two
noun-phrases and a verb-phrase.
e Benchmark system: Sha and Pereira (2003)
o 94.29% F1 Score
o Used second-order random fields and a variety of features such as part-of-speech tags

e Dataset: CoNLL 2000



2.3: Named Entity Recognition

e Tag elements in a text with a category
o “Kevin lives in Seattle” would be labelled as person, other, other, location.

e Benchmark system: Ando and Zhang (2005)
o 89.31% F1 Score
o Trained a model on NER and two auxiliary unsupervised tasks while permoign Viterbi
decoding when testing

e Dataset: CoNLL 2003



2.4. Semantic Role Labeling

e Assigns a role to each syntactic constituent in a text
o Typically assigns roles between ARGO and 5 to each argument of a verb
o “John ate the apple” would be tagged as ARGO, verb, ARG1.
e Benchmark system: Koomen et al. (2005)
o 77.92% F1 Score
o Used Winnow-like classifiers along with a decoding stage

e Dataset: CoNLL 2005
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Section 3: The Networks

e Old approach: hand-design task-specific features, feed to SVM
o Feature selection is task-dependent
o Complex feature have high computational cost
e New approach: pre-process as little as possible, train NN in E2E fashion
o NN learns feature extraction
o Features automatically trained to be relevant to task



3.1: Notation

e Think of NN as a composition of functions

fo()=fo(fg™ (- /o ()-..).

e Given matrix A, [A];; is value at row i, column |
e Window of size d¥n around column i

dwin !
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e Sequence of {X4,X,...,.x7} written as [x];T



3.3.1: Window Approach
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3.3.2: Sentence approach
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3.3.2: Sentence approach

e For SRL, add features for relative distance to verb considered and word being
tagged

Figure 3: Number of features chosen at each word position by the Max layer. We consider a sen-
tence approach network (Figure 2) trained for SRL. The number of “local” features output
by the convolution layer is 300 per word. By applying a Max over the sentence, we ob-
tain 300 features for the whole sentence. It is interesting to see that the network catches
features mostly around the verb of interest (here “report”) and word of interest (“pro-
posed” (left) or “often™ (right)).




3.4: Training

e Word-level Log-likelihood (WLL): Cross-entropy loss, we have covered that
before
e Sentence-level Log-likelihood (SLL): Consider which “tag paths” are valid
o Construct transition matrix representing validity of jumping from tag i to
tag j in successive words. This is trained along with network.
o Add transition scores, network scores when scoring tag paths.
e Trained using Stochastic Gradient Ascent



3.5: Supervised Training Results

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate
POS dyin =5 d’ =50 d' =5 n}, =300 A=0.01
NER

n! =300

SRL 7
ny, = 500
Table 5: Hyper-parameters of our networks. They were chosen by a minimal validation (see Re-
mark 8), preferring identical parameters for most tasks. We report for each task the window
size (or convolution size), word feature dimension, capital feature dimension, number of

hidden units and learning rate.




3.5: Supervised Training Results

Approach » | Chunking | NER | SRL

Benchmark Systems 89.31 | 77.92

NN+WLL
NN+SLL 81.47 | 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a vanilla neu-
ral network (NN) approach, on POS, chunking, NER and SRL tasks. We report results with
both the word-level log-likelihood (WLL) and the sentence-level log-likelihood (SLL).
Generalization performance is reported in per-word accuracy rate (PWA) for POS and F1
score for other tasks. The NN results are behind the benchmark results, in Section 4 we
show how to improve these models using unlabeled data.




3.5: Supervised Training Results
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Table 6: Word embeddings in the word lookup table of a SRL neural network trained from scratch,
with a dictionary of size 100,000. For each column the queried word is followed by its
index in the dictionary (higher means more rare) and its 10 nearest neighbors (arbitrarily
using the Euclidean metric).
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Section 4: Lots of Unlabeled Data

e We want word embeddings with more information than the ones in the table
of the SRL neural network in 3.5

e \We will see how to improve our poor embeddings using large unlabeled data
sets

e New embeddings to make new word lookup tables for our networks



4 .1: Data Sets

e Entire English Wikipedia
o Removed all paragraphs non-Roman characters and markups
o Tokenized, 631 million words
o Dictionary of 100,000 words from Wall Street Journal

e Reuters RCV1 data set
o 221 million words
o Extended dictionary to 130,000 words adding the 30,000 most common words in Reuters
o We can determine if adding this data set can yield improvements



4.2: Ranking Criterion vs. Entropy Criterion

e Used data sets to train language models that output scores for text

(@)

Most trainable parameters are in the lookup tables

e Previous works: Bengio and Ducharme (2001), Schwenk and Gauvain (2002)

(@)

O O O O

Estimate the probability of a word given previous words in the sentence

Suggests cross-entropy criterion

Computing normalization term is demanding given large dictionary

Neither work gave significant word embeddings

We can'’t really use the 0.2 bit/character entropy difference between humans and n-gram
models to learn grammar

Entropy criterion lacks dynamical range because its value is mostly determined by the most
frequent phrases

To learn syntax, rare but legal phrases are no less significant than common phrases



4.2: Ranking Criterion vs. Entropy Criterion

e They propose a pairwise ranking approach
o We do not want to emphasize a common phrase over a rare but legal phrase
o  Window network approach

0— 2 2 max{O, l—fe(x)—i—fe(x(w))}

xeXweD

e Okanohara and Tsuijii (2007) used a similar approach but with binary
classifications and a kernel classifier, not with word embeddings
e Smith and Eisner (2005), “negative” neighborhood



4.3: Training Language Models

e Trained on SGD of the ranking criterion, sampling sentence-word pairs each
iteration

e Cannot tune global hyperparameters

e Initialize networks with embeddings from earlier networks

e Train a succession of networks using increasingly large dictionaries, each
network being initialized with the embeddings of the previous network (sizes
and switching times arbitrary)

e Breeding
o Child networks initialized with parent’s embeddings and different training parameters based on

past generation’s success (learning rate, word embedding dimensions, # of hidden
dimensions, etc.)



4.3: Training Language Models

o LM1

o Window size 11, hidden layer with 100 units

o Trained on Wikipedia with dictionary sizes of 5k, 10k, 30k, 50k, and 100k most common Wall
Street Journal words

o 4 weeks

o LM2

o Initialized with LM1 embeddings, same dimensions as LM1
o Trained for another 3 weeks on Wikipedia+Reuters with 130k-word dictionary



4.4: Embeddings (Before)
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4.4: Embeddings (After - LM1)
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4.5: Semi-supervised Benchmark Results

e Semi-supervised learning
o Adhoc
o Self-training (pseudo-labels)
o Parameter-sharing

Approach CHUNK | NER | SRL

Benchmark Systems | 97.24 94.29 89.31

96.31 89.13 79.53
96.37 90.33 81.47 | 70.99

NN+WLL+LMI 97.05 | 9191 | 85.68 | 58.18
s

NN-+WLL+LM2 86.96 | 58.34
NN-+SLL+LM2 88.67 | 74.15




4.6: Ranking and Language

e Syntax is a prerequisite for semantic role labeling
o Existing semantic role labeling systems use parse trees, parsers know prior info about syntax
o They can’t use parse trees with unlabeled data

e Difficult to see how ranking criterion can obtain this information

e Ranking similar to operator grammars (Harris, 1968), which defines a ranking
criterion when testing if two sentences are semantically related by a
transformation

e They conclude that ranking criterion has the potential to extract strong
syntactic and semantic information

e Our language models are too restrictive for our goals
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5. Multi-Task Learning

e Features trained for one task can be useful for related tasks
o Already seen this with unsupervised word embeddings
o Has since become very popular in Computer Vision and RL

e Can be seen as a form of regularization




5.1 Joint Decoding versus Joint Training

Joint Decoding

e Probabilistic framework for inference across models
e Used in multi-modal domains like speech recognition



5.1 Joint Decoding versus Joint Training

Joint Training

Task 1 OQutput )L Task 2 Output) L Task 3 Output

e One network with multiple

Task
outputs Specific
o Need labels for each task for every Hidden
: Layers
input
o Loss as linear combination of tasks
e \What to do when labels Shared Hidden
: L Layers
correspond to different training Between Tasks
sets?

o lterative gradient updates
o Theoretically unstable, but works in

S Linguistic Input




5.2 Multi-Task Benchmark Results

e In this work specifically:
o Shared lookup tables

o Shared first linear layer in window architecture, first conv layer in sentence architecture
o Alternate between tasks for gradient updates

Lookup Table Lookup Table
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5.2 Multi-Task Benchmark Results

Approach

POS
(PWA)

CHUNK
(F1) (F1)

NER

Benchmark Systems

97.24 94.29 89.31

NN+SLL+LM2
NN+SLL+LM2+MTL

Window Approach
93.63 ‘ 88.67 ‘

97.22

94.10 88.62

97.20 ‘

NN+SLL+LM2
NN+SLL+LM2+MTL

Sentence Approach
97.12 93.37 88.78 | 74.15
97.22 93.75 88.27 | 74.29
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Section 6: The Temptation

e Results so far have been (almost*) from scratch, as originally intended
o *almost. since we preprocessed the data into raw words-- if we really worked from scratch, we
would start from characters (or pictures of characters!)

e This has disregarded a large amount of linguistic knowledge

e \We've shown that, by using large unlabeled datasets, we can still get near
state-of-the-art performance

e So how much better can we get if we increase “task-specific engineering”
using known techniques from NLP literature?



6.1: Suffixes

Statistically, suffixes are strong predictors of word syntactic function
This is useful for part-of-speech taggers (the “POS system”)
e Let’'s add discrete word features that represent the last two characters of each

word
o Size of suffix dictionary: 455

e Improves POS tagging score from 97.20 to 97.29 + (0.09)



6.2 Gazetteers

A “gazetteer” is a dictionary containing well-known named entities
As you might imagine, this is useful for the named entity recognition (NER)
task

e Four gazetteer categories: (1) locations, (2) person names, (3) organizations,
(4) miscellaneous

e Add 4 additional feature for each word that are “on” and “off” if the word is
found in each of four categories

e Increases NER score from 88.67 to 89.59 (+0.92)



6.3 Cascading

e Cascading: using features outputted by one task as input for another task
e “Conventional NLP systems often use features obtained from the output of

other preexisting NLP systems”

e Can we improve CHUNK and NER tasks by adding POS tags as features?
e Yes! Improvement on CHUNK from 93.63 to 94.32 (+0.69)



6.3 Ensembles

e Ensemble models combine the predictions of multiple diverse models to
predict an outcome

e Constructing ensembles of classifiers is the best way to trade computational
efficiency for generalization performance

e Many NLP systems achieve state-of-the-art performance by combining the
outputs of multiple classifiers

e Because neural networks are nonconvex, training runs with different
initializations usually give different solutions



6.3 Ensembles [cont'd]

Try ten training runs on each POS, CHUNK, NER task, with ten different
initializations

Voting leads to a small improvement (.1 to .3) in average network performance

They also tried adding a linear layer to the outputs of the classifiers and
training that way: this did not outperform the simple voting

Performance variability among the networks is not very large, anyway



6.5 Parsing

e Some past researchers have argued that syntactic parsing is necessary for the
SRL (semantic role labeling) task

e So far, we've gotten close to state-of-the-art on SRL without parse trees at all

e Add parse tree features to the system:
Increase score from 74.15 to 77.92 (+3.8%)




6.6 Word Features

e They created their word embeddings via language modelling, instead of using
previously established algorithms (like “Brown clustering”)

e A natural question: how to these embeddings compare? |Is one more useful
than the other?

e Answer: the new word embeddings do better! (very slightly)



6.7 Engineering a Sweet Spot

e Implement a standalone version of the architecture and just try to get the best
scores possible

e They engineered their system from scratch and it's over 200x faster than the
SOTA system and uses much less RAM

POS System RAM (MB) Time (s)
Toutanova et al. (2003)
Shen et al. (2007)

SENNA 32 g \Vow

SRL System RAM (MB) Time (s)
Koomen et al. (2005) 3400 6253
SENNA 124 51
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Section 7: Critical Discussion

e Why abandon all the pre-existing knowledge of engineering NLP features and

instead pursue end-to-end learning?
o Task-specific features do not transfer well to other tasks — Cannot have a method that
generalize well to all tasks.
o Want something generalizable

e Why neural networks?

o It's able to learn hidden representation of words.
o Learning algorithm scales linearly, which allows it to take advantage of hardware
advancements.
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Section 8: Conclusion

Contribution:

e Multilayer neural network that can learn to handle a number of NLP tasks with

both speed and accuracy.
e More broadly, an end-to-end learning system that can learn useful features

from unlabeled data set instead of relying on engineered features.



