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Approach-i1a Generating data from
probability distributions/functions

e We specifically model the data to find out what exactly we want to test

e “Can I trust you more? Model-agnostic Hierarchical Explanations” Tsang et al.
O Objective 1s to Stlldy the interactions b / w the features. Table 2: Data generating functions
o Generated data from functions have interactions with interactions
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e Sorokina et al. Used a random function generator (Hooker)

e Detecting Statistical Interactions from Neural Network Weights, Tsang et al.,
ICLR 2018 again used functions to model interactions between features

e All these methods are modelling interactions between features

Table 1: Test suite of data-generating functions
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Approach-1b Manually creating data
and modelling attention*

e Generating data according to certain conditions which are desirable to the
distribution
e This method allows to visually “see” the data and manually custom-craft the
data distribution and features
o Used in Input-Cell Attention, Ismail et al., 2019.
o Think architecture first, Manuscript
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e Neural Network Attributions: A Causal Perspective, Chattopadhyay et al.

e Sample individual sequences uniformly of length be-
tween [T',T + 5]. We used 7" = 10. Let z* refer to the
sequence value at length ¢.

e Vi;2 < i < T Sample z° ~ N(0,0.2).

e With probability 0.5 either (a) sample V¢;0 < 7 < 3
z* ~ N(1,0.2) and label such sequences class 1 or (b)
sample Vi;0 < i < 3 2% ~ N(—1,0.2) and label such
sequences class 0.



Approach 2 - Modifying real datasets

e Altering real datasets
o Adding color to Color MNIST - REPAIR, Li et al. and CDEP, Reiger et al.
Adding color to MNIST - to learn if model looks at color or shape
o DecoyMNIST - adding gray patch to the corner for images
o Spurious signals (noise) in SST
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e C(Creating new features from original datasets:
o As described by using SLIC superpixel in images to graphs
o Using word relations to create graphs



Evaluation Methods



Evaluation Methodologies (1)

Approach-1: Using qualitative assessments - visuals like saliency maps in
images or scores of different words in NLP tasks [Might include Human
experiments]

Papers using this approach:

©)

Contextual Decomposition (CD), Murdoch et al., ICLR 2018
m Picked phrases which showed ability to show negation
Hierarchical Interpretations of NN Predictions (ACD), Singh et al., ICLR 2019
m Shown scores on images and sentences visually + human experiments
GradCAM, Selvaraju et al., ICCV 2017
m Visual examination + error rates
Axiomatic Attribution for Deep Networks (IG), Sundararajan et al., ICML 2017
m Visual examination + human perceived
“Why Should I Trust You?” Explaining the Predictions of Any Classifier,
Ribeiro et al., SIGKDD, 2016
m Human experiments to identify the important regions
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks,
Janizek et al., 2020
m Qualitative experiments on samples from datasets 6



Papers with this approach
o Neural Network Attributions: A Causal Perspective
m Qualitative + simulated data
o Can I trust you more? Model agnostic hierarchical explanations, Tsang et al,
ICLR 2019
m Randomly chosen phrases from the dataset, manual inspection
o Interpretations are useful: penalizing explanations to align neural networks
with prior knowledge, Reiger et al. ICLR 2020 (reject)
m Penalizing interactions adding to loss function, training the network



Evaluation Methodologies (2)

e Approach-2: Comparison between different methods [Usually occurs along
with papers in Approach-1]
e Papers using this approach:
o Contextual Decomposition, Murdoch et al., ICLR 2018
m Compared correlation b/w LR and CD, Gradient, LOO, Cell Decomp,IG
o Sanity Checks for Saliency Maps, Adebayo et al., NIPS 2018
m Correlation between various saliency methods and sanity checking
their effectiveness by using experiments



Evaluation Methodologies (3)

e Approach-3: Masking the most important attributions (the ones

found with highest scores) and calculating the drop in accuracy/performance
[When proposing new attribution technique]
e Papers using this approach:

o Data-Shapley : What is your data worth? Equitable Valuation of Data,
Ghorbani et al., ICML 2019

m Calculating score of a data point, removing highest, drop in accuracy
calculated

o L-Shapley and C-Shapley: Efficient Model Interpretation for Structured
Data, Chen et al., ICLR 2019

m Masking important features on text and images and calculating drop
in Log odds ratio

o Think Architecture First, Manuscript, 2020
m Masking important features, drop in accuracy in LSTMs



Evaluation Methodologies (4)

e Approach-4: Correlation between weights and outputs (for methods
which claim a particular technique provides good explanation) or dependence
e Papers which use this approach:
o Attention is not Explanation, Jain et al. , ACL, 2019
m Exploring correlation between attention weights and importance
scores of grads/LOO showing no significant correlations
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o Approach-5: Robustness
o Interpretation of Neural Networks is Fragile*, Ghorbani et al., AAAI
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