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Motivation

e When applying pre-trained language representations to downstream task such as
Natural Language Inference (NLI), NER or Q/A, two strategies are currently
employed:

o Feature Based (ELMO) — uses task specific architectures
o Fine-tuning (OpenAl GPT) — fine tunes all pre-trained params.

e However, both of them use unidirectional language models to learn general
language representations and this limits the choice of architectures that can be
used during pre-training.

OpenAl GPT




Background

e Masked Language Model (MLM): This model randomly masks some of the
tokens from the input and the objective is to predict the original vocabulary id of
the masked word based only on its context. This model also enables the
representation to fuse the right and left context.

e Pretraining: Here the model is trained on unlabeled data over different pre-
training tasks.

e Fine-Tuning: Taking pre-trained parameters the model is initialized, and then
all the parameters are fine-tuned using labeled data from the downstream tasks.
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Authors present BERT to improve fine-tuning based approaches. They claim that

BERT alleviates unidirectionality constraint by using a “masked language model”

(MLM) pre-training objective.



An Intuitive Figure Showing WHY Claim

BERT (Ours) OpenAl GPT

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAl GPT are fine-tuning approaches, while ELMo is a feature-based approach.



Proposed Solution
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Pre-training Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).



Model Architecture

e BERT’s model architecture is a multi-layer bidirectional Transformer encoder
based on the original implementation described in Vaswani et al. (2017) and
released in the tensor2tensor library.

e Used 2 model sizes:

e BERTgAgr: (L=12, H=768, A=12, Total Parameters=110M)
e BERTisrcge: (L=24, H=1024, A=16, Total Parameters=340M)

Here, L: number of layers (i.e., Transformer blocks), H: the hidden size, A: and
the number of self-attention heads.

e BERTgssg was chosen to have the same model size as OpenAl GPT for
comparison purposes.



Input/Output Representations

e Used token sequence to represent both a single sentence and a pair of sentences.
e WordPiece Embeddings with a 30k token vocab.

e First token of every sequence is a special classification token [CLS]. The final
hidden state of this token is used for classification tasks.

e Sentences are seperated with special token [SEP] and a learned embedding to
every token indicating whether it belongs to sentence A or B.

e Similar to Transformers, input representation is constructed by summing the
corresponding token, segment with positional embeddings.
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Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.




Pre-training BERT

Pre-training was done using two unsupervised tasks: MLM and NSP.

Task 1: MLM

« Simply mask some percentage of the input tokens at random, and then predict
those masked tokens. The final hidden vectors corresponding to the mask
tokens are fed into an output softmax over the vocabulary.

« A downside is that we are creating a mismatch between pre-training and fine-
tuning, since the [ MASK] token does not appear during fine-tuning.

« The training data generator chooses 15% of the token positions at random for
prediction. If the i-th token is chosen, we replace the i-th token with (1) the
[MASK] token 80% of the time (2) a random token 10% of the time (3) the
unchanged i-th token 10% of the time.
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Pre-training BERT

Task 2: NSP

« Beneficial for many downstream tasks such as QA and NLI which are based on
relationship between two sentences.

« For this, they chose two sentences A and B for each pre-training example. 50%
of the time, the second sentence is logical continuation of first (labeled as

IsNext), and 50% of the times the second sentence is any arbitrary sentence
(labeled as NotNext).

« Final hidden state of the [CLS] token, “C”, is used for this task as it is a binary
level classification task.
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Pre-training Data

Follow the existing literature on language model pre-training.

BookCorpus (800M words) and English Wikipedia (2,500M words). For
Wikipedia, only text passages were extracted and list, tables and headers were
ignored.

Critical to use a document-level corpus rather than a sentence-level corpus in
order to extract long contiguous sequences.
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Fine-tuning BERT

Very straightforward as Transformer allows BERT to model many downstream
tasks containing a single text or text pairs.

For text pairs, independently encode text pairs before applying bi-directional
cross attention.

For each task, simply plug the task-specific inputs and outputs into BERT and
fine-tune all parameters end-to-end.

At input, sentence A and B from pretraining are analogous to o (1) sentence
pairs in paraphrasing, (2) hypothesis-premise pairs in entailment, (3) question-
passage pairs in question answering, and (4) a degenerate text-@ pair in text
classification or sequence tagging.

At the output, token representations are fed into an output layer for token-level
tasks, such as sequence tagging or QA, and [CLS] representation is used for
classification such as entailment or sentiment analysis.
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Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.



Experimental Results and Analysis

System MNLI-(m/mm) QQP  QNLI SST-2 CoLA  STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT | ArGE 86.7/85.9 721 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.
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System Dev

EM

FlI EM

Test

Fl1

Top Leaderboard Systems (Dec 10th, 2018)

Human -
#1 Ensemble - nlnet -
#2 Ensemble - QANet -

- 823
- 86.0
- 845

91.2
91.7
90.5

Published
BiDAF+ELMo (Single) -
R.M. Reader (Ensemble) 81.2

856 -
879 823

85.8
88.5

Ours
BERT&ase (Single) 80.8
BERT | arce (Single) 84.1
BERTarce (Ensemble) 85.8
BERTarce (Sgl.+TriviaQA) 84.2
BERT| arce (Ens.+TriviaQA) 86.2

885 -
909 -
918 -
91.1 85.1
922 874

91.8
93.2

points and fine-tuning seeds.

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-

System Dev Test
EM Fl1 EM FlI
Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 748 78.0
#2 Single - nlnet - - 742 771
Published
unet (Ensemble) - - 714 749
SLQA+ (Single) - 714 744
Ours
BERTarce (Single) 78.7 81.9 80.0 83.1

use BERT as one of their components.

Table 3: SQuAD 2.0 results. We exclude entries that

System Dev Test
ESIM+GloVe 519 527
ESIM+ELMo 59.1 59.2
OpenAl GPT - 780
BERTgAsE 81.6 -
BERTLARGE 86.6 86.3
Human (expert)'f - 85.0
Human (5 annotations)’ - 88.0

Table 4: SWAG Dev and Test accuracies. 'Human per-
formance is measured with 100 samples, as reported in

the SWAG paper.
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Ablation Studies
(Effect of Pre-training Tasks)

« Removing NSP hurts

Dev Set

Tasks MNLI-m QNLI MRPC SST-2 SQuAD performance significantly on
(Acc) (Acc) (Acc) (Acc) (F1) QNLI, MNLI, and SQuAD 1.1.
BERTgAsE 844 884 867 927 885
No NSP 839 849 865 926 879
LTR & NoNSP 821 843 775 921 778 * The LTR model performs worse
+ BiLSTM 82.1 841 757 916 849 than the MLM model on all tasks,
with large drops on MRPC and
Table 5: Ablation over the pre-training tasks using the SQuAD.

BERTgAsE architecture. “No NSP” is trained without
the next sentence prediction task. “LTR & No NSP” is
trained as a left-to-right LM without the next sentence « Even after adding a random

prediction, like OpenAl GPT. “+ BIiLSTM™ adds a ran- BiLLSTM on top of LTR and No
domly initialized BiILSTM on top of the “LTR + No NSP, it hurts performance on the
NSP” model during fine-tuning. GLUE tasks.
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Ablation Studies
(Effect of Model Size)

Hyperparams Dev Set Accuracy
#L. #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12  5.84 71.9 798 88.4
6 768 3 524 80.6 822  90.7

6 768 12  4.68 81.9 848 913
12 768 12 3.99 84.4 86.7 929
12 1024 16 3.54 85.7 869 933
24 1024 16  3.23 86.6 87.8 93.7

Table 6: Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

It has long been known that
increasing the model size will
lead to continual improvements
on large-scale tasks such as
machine translation and
language modeling

This is the first work to
demonstrate convincingly that
scaling to extreme model sizes
also leads to large improvements
on very small scale tasks,
provided that the model has been
sufficiently pre-trained.
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Conclusion and Future Work

Recent empirical improvements due to transfer learning with language models have
demonstrated that rich, unsupervised pre-training is an integral part of many

language understanding systems.

Major contribution is further generalizing these findings to deep bidirectional
architectures, allowing the same pre-trained model to successfully tackle a broad set

of NLP tasks.

20



References

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word representations. In NAACL.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language
understanding with unsupervised learning. Technical report, OpenAl.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation system:
Bridging the gap between human and machine translation.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. 2018. Character-level language
modeling with deeper self-attention. arXiv preprint arXiv:1808.04444.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on Machine
learning, pages 160—167. ACM.

William B Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

Yacine Jernite, Samuel R. Bowman, and David Sontag. 2017. Discourse-based objectives for fast
unsupervised sentence representation learning. CoRR, abs/1705.00557.

Z. Chen, H. Zhang, X. Zhang, and L. Zhao. 2018. Quora question pairs.

21



