
AllenNLP Interpret:
A Framework for Explaining Predictions of NLP Models

-Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, 
Matt Gardner, Sameer Singh

Presenter: Rishab Bamrara
https://qdata.github.io/deep2Read/

January 24, 2020

1



Motivation

• State-of-the-art models for NLP are imperfect and significantly underperform
humans on a myriad of tasks.

• These imperfections leave us with a question, “why did model made this prediction?”

• Interpretations are useful to illuminate strengths and weaknesses of a model,
increase user trust, and evaluate hard-to-define criteria such as safety and fairness.

• However, most codebases on computer vision are model or task-specific (sentiment
analysis), or contain implementations for a small number of interpretation methods.

• As a result, existing interpretation codebases are hard to adopt for practitioners and
burdens interpretability researchers.



3

• Saliency maps explain a model’s prediction by identifying the importance of the
input tokens.

• Gradient-based methods determine the importance using the gradient of the
loss with respect to the input tokens.
– Vanilla Gradient visualizes the gradient of the loss with respect to each
token.

– Integrated Gradients define a baseline x’ and determine the word
importance by integrating the gradient along the path from the baseline to the
input.

– SmoothGrad averages the gradient over many noisy versions of the input.

• Adversarial attacks change the input itself.
– HotFlip replaces the words to change the model’s prediction.
– Input Reduction means removing words to maintain the model’s
prediction.

Background



4

• Targeted HotFlip (Extension): What words should be swapped in order to
cause a specific prediction.

• Untargeted HotFlip: How would the prediction change if certain words are
replaced.

• Reading Comprehension: Given a passage, answers questions about it.
SQuAD and DROP are generally used.

• Masked Language Modelling: Mask one or more words in a sentence and
make the model predict those words. BERT is commonly used.

• Text Classification: Classify a given piece of text into some predefined classes.
BiLSTM is used.

• Textual Entailment: Directional relation between text fragments. T entails H
(T=>H) means on the basis of T, H is likely to be true. Self-attention models are
generally used.

Background (Contd.)



5

• Named Entity Recognition (NER): Locate and classify a named entity in the
text. Done using Input Reduction.

• Coreference Resolution: Finding all expressions that refer to the same entity
in the text. E.g. I, me and Alfred, he, his, him etc.

Background (Contd.)



Related Work

6

• Alternative Interpretation Methods:

� Bahdanau et al., 2015 : Visualization of attention weights

� Karpathy et al., 2016: Isolate the effect of individual neurons

• Existing Interpretation Toolkits in Computer Vision:

� Papernot et al., 2016

� Norton and Qi: Interactive demos

� Liu et al., 2018, Strobelt et al. 2019 and Vig 2019: Visualization of

attention weights

� Lee et al., 2019: Adversarial attacks to reading comprehension systems



Claim / Target Task

7

Create an extensible toolkit for interpreting NLP models. Make an easy to apply

existing interpretation methods to new models as well as develop new interpretation

methods.



An Intuitive Figure Showing WHY Claim

8https://medium.com/@ageitgey/natural-language-processing-is-fun-part-3-explaining-model-predictions-
486d8616813c

https://medium.com/@ageitgey/natural-language-processing-is-fun-part-3-explaining-model-predictions-486d8616813c


Proposed Solution



Implementation (Existing NLP Models)

10

• Models in AllenNLP include a forward() function to run the model as well as
compute the loss if a label is provided (supervised).

• For obtaining results there is a Predictor class. AllenNLP calls predict_json() with a
JSON containing raw strings (input) to get the model’s prediction.

• Predictor class also computes input gradients in a model-agnostic way. In case when
there are widely varying outputs, AllenNLP leverages the fact that forward() gives
the loss if given a label.

• Firstly, it gets the prediction and then converts the prediction into a set of labelled
examples using predictions_to_labelled_instances(). Each instance is used to
compute loss for a different part of output.

• In case of multiple embeddings, AllenNLP computes gradient by registering a
PyTorch backward gradient hook on the model's TokenEmbedder function.

API => call predictions_to_labelled_instances() and then get_gradients()



Implementation (Existing NLP Models)

11

• Context-Dependent Embedding Matrices such as the ones used in ELMo and BERT,
creates problem for HotFlip operation which requires searching over a discrete
embedding matrix.

• Create context-independent matrix containing features from model’s last context-
independent layer. E.g. for ELMo save the features from its context independent
Char-CNN into a matrix.

• For Visualization, AllenNLP Demo has HTML and JavaScript components for
visualizing saliency maps and adversarial attacks.



Implementation (Adding Interpretation)

12

1. Implement the new Interpretation into AllenNLP using
“predictions_to_labelled_instances()” and “get_gradients()”.

1. Add the new Interpreter to the demo back-end.

1. Add the frontend HTML/JavaScript for saliency visualization. Can make a one-line
call for reusable front-end components.



Implementation (Adding New Model)

13

1. Implement “predictions_to_labelled_instances()” for the new model.

1. Add the new model’s path to the demo back-end.

1. Add the frontend HTML/JavaScript for saliency visualization. Can make a one-line
call for reusable front-end components.



Data Summary

▪ General English Sentences.

14



Experimental Results and Analysis

15



Experimental Results and Analysis

16



Experimental Results and Analysis

17



Conclusion and Future Work

18

AllenNLP Interpret toolkit facilitates the interpretation of NLP models. The toolkit is

flexible i.e. it enables the development and evaluation of interpretation methods

across a wide range of NLP models and tasks.



References

• Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

• Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

• Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey
Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, et al. 2016. Technical report on
the CleverHans v2.1.0 adversarial examples library. arXiv:1610.00768.

• Andrew P Norton and Yanjun Qi. 2017. Adversarial-Playground: A visualization suite showing
how adversarial examples fool deep learning. In 2017 IEEE VizSec Symposium.

• Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized Bert
pretraining approach. arXiv:1907.11692.

• Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2019. Seq2Seq-Vis: A visual debugging tool for sequence-to-sequence
models. IEEE TVCG.

• Jesse Vig. 2019. Visualizing attention in transformer based language models.
arXiv:1904.02679.

• Gyeongbok Lee, Sungdong Kim, and Seung-won Hwang. 2019. QADiver: Interactive
framework for diagnosing QA models. In AAAI Demonstrations

19


