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Experiment Summary:

Stanford Sentiment Treebank (SST): Standard NLP benchmark
which consists of movie reviews ranging from 2 to 52 words long. In
addition to labels of reviews, it also has labels for each phrase in the
review.

Word Embeddings: Glove (glove.6B.300d)

Model: Bi-LSTM



Ixperiment

« Epochs: 50

« Training Accuracy: 99.9592

« Training Loss: 0.000024

e Dev Accuracy: 80.2752 —  86.2% or 85.8% mentioned in paper

e Dev Loss: 1.410839



Experiment Summary:

PyTorch. For SST, we train a standard binary classification LSTM mode which achieves 86.2%
accuracy. On MNIST, we use the standard PyTorch examplﬂ which attains accuracy of 97.7%. On
ImageNet, we use a pre-trained VGG-16 DNN architecture Simonyan & Zisserman (2014) which
attains top-1 accuracy of 42.8%. When using ACD on ImageNet, for computational reasons, we start
the agglomeration process with 14-by-14 superpixels instead of individual pixels. We also smooth
the computed image patches by adding pixels surrounded by the patch. The weakened models for
the human experiments are constructed from the original models by randomly permuting a small
percentage of their weights. For SST/MNIST/ImageNet, 25/25/0.8% of weights are randomized,
reducing test accuracy from 85.8/97.7/42.8% to 79.8/79.6/32.3%.




Results:
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Figure 2: Showing ACD Hierarchical interpretations for a sentence.
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