
Parsimonious Black-Box Adversarial Attacks
Via Efficient Combinatorial Optimization

Seungyong Moon, Gaon An, Hyun Oh Song
ICML 2019

Presented by Eli Lifland, 8/30/2019
1

https://qdata.github.io/deep2Read/

Adversarial Perturbations

2https://qdata.github.io/deep2Read/

White vs Black Box Attacks

3

● White Box: access to parameters and therefore
gradient
○ Fast Gradient Sign Method (FGSM): perturb in

direction of gradient
○ Projected Gradient Descent (PGD): multiple

iterations of FGSM
● Black Box: only query access
○ Substitute networks: train a network to match

predictions of target network
○ Gradient estimation: directly estimate gradient

via queries
■ Outperforms substitute networks

https://qdata.github.io/deep2Read/

Motivation

4

● Focus on black-box, which is more realistic in
practice

● Problems with current black-box methods
○ Substitute network attacks don’t always

transfer to target networks
○ Robustness of gradient estimation affected by

choice of hyperparameters
■ E.g. learning rate, decay rates, update rule

https://qdata.github.io/deep2Read/

Problem formulation

5

● Create imperceptible perturbations xadv under L∞
radius with limited query budget to maximize loss

● Attacker only has access to loss function, l(x,y)

https://qdata.github.io/deep2Read/

FGSM Approximation

6

● Where the ≤ is element-wise inequality and 1 is a
vector of ones

● Optimal solution will be obtained at extreme point
of feasible set, or a vertex of the L∞ ball

● PGD on Cifar-10 does give solutions close to
vertices of L∞ ball

https://qdata.github.io/deep2Read/

PGD Pixel-level Perturbations

7https://qdata.github.io/deep2Read/

Discrete formulation

8

● Only consider pixel perturbations of +/- ϵ

● f(x) = l(x,ygt) for untargeted attacks, -l(x,ytarget)
for targeted attacks

● Set maximization problem in which we choose
from all pixels V a set S with +ϵ perturbations,
with the rest having -ϵ perturbations

https://qdata.github.io/deep2Read/

Submodularity

9

● Define F(S U {e}) - F(S) as the marginal gain from
adding pixel e to S
○ Submodularity implies that this marginal gain

will be smaller when S has more elements
○ “Diminishing returns”

● This is not completely true but algorithm assumes
it is approximately true to cut save queries

https://qdata.github.io/deep2Read/

Lazy Greedy Insertion

10

● First, query marginal gain for all elements not in S,
and insert these elements into a max heap
○ this is treated as an upper bound because of

submodularity
● While the heap isn’t empty:
○ Pop the top element, update its upper bound
○ If it’s greater than the new top element
■ If it’s > 0, add it to S
■ else, end

○ If it’s less than the new top element
■ Add it back to the heap

https://qdata.github.io/deep2Read/

Implementation

11

● Exploit locally regular structure to do hierarchical
evaluation
○ At each level, do one iteration of lazy insertion

then lazy deletion
○ Terminate when converges or query limit

reached

https://qdata.github.io/deep2Read/

Diminishing gains

Submodular set functions are set functions who exhibit diminishing
returns

Basically: as the size of the input set increases, the value that a single
element adds decreases

Our problem: approximate submodularity

● As it turns out, our problem is not technically submodular

● However, as long as submodularity is not “severely
deteriorated” (Zhou & Spanos, 2016), submodular
maximization algorithms still work very well

● This means that we can compute an approximately optimal
solution with a greedy algorithm!

Local-search optimization
● Notation

○ P is all pixels,
○ S is pixels to add +ε to
○ P\S are pixels to add -ε

● Basically, we can greedily choose to insert a
pixel into S if the marginal gain is strictly
positive, and remove it from S if the marginal
gain is strictly negative
○ Then once the algorithm converges, it will

converge to a local optimum

● End up with a set of pixels S to perturb the
input image with +ε, and P\S to perturb with -ε

● At each step we have to find the element that maximizes the marginal gain
○ Therefore, our greedy algorithm has to make O(|P| |S|) queries
○ This may be impractical for query-limited black-box attacks

● Speed this up: use the Lazy-Greedy algorithm (Minoux, 1978)
○ Instead of re-computing the marginal gain for each pixel at each iteration, keep

the upper bounds on the marginal gains in a max-heap
○ Theoretically has the same worst-case number of function evaluations but

provides a speedup of several orders of magnitude in practice!
○ Why? Because of submodularity! (wow)

Speedup #1:
Acceleration with lazy evaluations

Speedup #2:
Hierarchical lazy evaluation

● Exploit the locally regular structure of most images and do this
on a hierarchical scale for another speed boost

Blue squares are in S, red squares are in P\S

Experimental Results

17https://qdata.github.io/deep2Read/

Conclusion

18

● Practical method for black-box adversarial attacks
● No gradient estimation required
○ No update hyperparameters

● State of the art success and query rates for both
targeted and untargeted attacks

https://qdata.github.io/deep2Read/

