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Motivation

» Deep neural networks (DNNs) are vulnerable to adversarial
examples, which are carefully crafted instances aiming to cause

prediction errors for DNN:Ss.

» Recent defensing technique on adversarial examples is not
enough: examining local neighborhoods in the input space of
DNN models, previous work has limited what regions to
consider, focusing either on low-dimensional subspaces or small

balls.



Background

» Adversarial examples: are slightly perturbed versions of
correctly classified input instances, which are misclassified.

» The amount of perturbation used to generate an adversarial
example from the original input instance 1s called the example’s
distortion.

Defense against adversarial examples:

» Adversarial training with examples generated by projected
gradient descent (PGD);

» Region classification, takes the majority prediction on several
slightly perturbed versions of an input, uniformly sampled from
a hypercube around it. In contrast, classifying only the input
instance can be referred to as point classification.



Related Work

* Liu et al. (2017) and Tramer et al. (2017) examine limited regions around
benign samples to study why some adversarial examples transfer across
different models.

« Madry et al. (2017) explore regions around benign samples to validate the
robustness of an adversarialy trained model.

 Tabacof& WValle(2016) examine regions around adversarial examples to
estimate the examples’ robustness to random noise.

* (Cao & Gong (2017) determine that considering the region around an input
instance produces more robust classification than looking at the input instance
alone as a single point.

Limitations:
* focus on low-dimensional subspaces around a model’s gradient direction.
* explore many directions, but they focus on a small ball.



Claim / Target Task

Information from larger neighborhoods—both in more
directions and at greater distances—will better help us
understand adversarial examples in high-dimensional
datasets.



An Intuitive Figure Showing WHY Claim
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Figure 2: Minimum and median decision boundary distances across random directions, for a sample
of images. Blue: Benign. Red: FGSM. Green: OPTMARGIN (ours). Orange: OPTBRITTLE.
Each statistic 1s plotted in ascending order. A black line 1s drawn at the expected distance of images
sampled by region classification.

No simple threshold on any one of these statistics accurately separates
benign examples (blue) from OPT MARGIN examples (green).



Proposed Solution

€ Demonstrate OPT-MARGIN, a new attack that evades region
classification systems with low-distortion adversarial examples.

@ Analyze a larger neighborhood around input instances by looking
at properties of surrounding decision boundaries, namely the
distances to the boundaries and the adjacent classes.

&®Train a classifier to differentiate the decision boundary
information that comes from different types of input instances



Implementat

Dataset:

= MNIST, consisting of black-and-white handwritten digits (LeCun, 1998)

= CIFAR-10, consisting of small color pictures (Krizhevsky & Hinton, 2009)
= a small subset of ImageNet (additionally)

Model Training:

= MNIST: CNN, both normal and with PGD -Le perturbation limit of 0.3

= CIFAR-10: ResNet, bot normal and with PGD -Leo perturbation limit of 8
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minimize ||z’ — z||2 + ¢ (£1(2") + ... + £, (2))

Let Z(x) refer to the |C|-dimensional vector of class weights, in logits, that f internally uses to
classify image . As in|Carlini & Wagner|s L attack (2017b), we define a loss term for each model
in our ensemble:

li(a") = l(z" + v;) = max (—k, Z(2' +v;), — max{Z (' + v;); : j # y})

v20=0



Data Summary

MNIST CIFAR-10
Examples Normal Adv tr. Normal Adv tr.
OPTBRITTLE 100%  0.0732  100% 0.0879 100% 0.824 100% 3.83
OPTMARGIN (ours) 100%  0.158 100%  0.168 100% 1.13 100% 4.08
OPTSTRONG 100% 0.214 28%  0.391 100%  2.86 73% 37.4
FGSM 91% 0.219 6% 0.221 82%  8.00 36% 8.00

Table 1: Success rate (%) and average distortion (RMS) of adversarial examples generated by dif-
ferent attacks. On MNIST, the level of distortion in OPTMARGIN examples is visible to humans,
but the original class is still distinctly visible (see Figurein the appendix for sample images).

MNIST CIFAR-10
Region cls. Point cls. Region cls. Point cls.
Examples Normal Adv. tr. Normal Adv.tr. Normal Adv.tr. Normal Adv. tr.
Benign 99%  100% 99%  100% 93% 86% 96% 86%
FGSM 16% 549 9%  94% 16% 55% 17% 55%
OPTBRITTLE 95%  89% 0% 0% 7%  19% 0% 0%

OPTMARGIN (ours) 1% 10% 0% 0% 5% 5% 0% 6%

Table 2: Accuracy of region classification and point classification on examples from different at-
tacks. More effective attacks result in lower accuracy. The attacks that achieve the lowest accuracy
for each configuration of defenses are shown in bold. We omit comparison with OPTSTRONG due 10
to its disproportionately high distortion and low attack success rate.
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tacks. More effective attacks result in lower accuracy. The attacks that achieve the lowest accuracy
for each configuration of defenses are shown in bold. We omit comparison with OPTSTRONG due 11
to its disproportionately high distortion and low attack success rate.
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Figure 1: Decision boundary distances (RMS) from single sample images, plotted in ascending or-
der. Colors represent the adjacent class to an encountered boundary. A black line is drawn at the
expected distance of an image sampled during region classification. Results are shown for models
with normal training and models with PGD adversarial training. For MNIST, original example cor-
rectly classified 8 (yellow); OPTBRITTLE and OPTMARGIN examples misclassified as 5 (brown);
FGSM example misclassified as 2 (green). For CIFAR-10, original example correctly classified as
DEER (purple); OPTBRITTLE, OPTMARGIN, and FGSM examples misclassified as HORSE (gray).
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Experiment'
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Figure 2: Minimum and median decision boundary distances across random directions, for a sample
of images. Blue: Benign. Red: FGSM. Green: OPTMARGIN (ours). Orange: OPTBRITTLE.
Each statistic is plotted in ascending order. A black line is drawn at the expected distance of images
sampled by region classification.

> No simple threshold on any one of these statistics accurately separates benign examples (blue)
from OPTMARGIN

> The effect of PGD adversarial training on the robustness of benign examples to random

. . . . 13
perturbations is not universally beneficial nor harmful.



Experimental

Adversarial examples generated by OPT MARGIN and FGSM are much harder to
distinguish from benign examples in this metric.
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Figure 3: Average purity of adjacent classes around benign and adversarial examples.
Orange: OPTBRITTLE. Red: FGSM. Green: OPTMARGIN (ours). Blue: Benign. Curves that are
lower on the left indicate images surrounded by decision regions of multiple classes. Curves that

near the top at rank 1 indicate images surrounded almost entirely by a single class. 14



Experimental

False pos. False neg. Accuracy
Training attack  Benign OPTBRITTLE ~ OPTMARGIN  Our approach |Cao & Gong

MNIST, normal training

OPTBRITTLE 1.0% 1.0% T4.1%
OPTMARGIN 9.6 % 0.6% 7.2% 90.4% 10%
MNIST, PGD adversarial training
OPTBRITTLE 2.6% 2.0% 39.8%
OPTMARGIN 10.3% 0.4% 14.5%
CIFAR-10, normal training
OPTBRITTLE 5.3% 3.2% 56.8%
OPTMARGIN 8.4% 7.4% 5.3% 96.4% 5%
CIFAR-10, PGD adversarial training
OPTBRITTLE 0.0% 2.4% 51.8%
OPTMARGIN 3.6% 0.0% 1.2%

Table 3: False positive and false negative rates for the decision boundary classifier, trained on ex-
amples from one attack and evaluated examples generated by the same or a different attack. We
consider the accuracy under the worst-case benign/adversarial data split (all-benign if false positive
rate is higher; all-adversarial if false negative rate is higher), and we select the best choice of base
model and training set. These best-of-worst-case numbers are shown in bold and compared with
Cao & Gong’s approach from Table[2]



Experimenta

Table 1: Success rate(%) and average distortion of
adversarial examples generated by OptMargin attack

MNIST CIFAR-10
Normal Adv tr. Normal Adv tr.

OptMa 100% 0.164 100% 0.165 100% 1.248 100% 4.310
rgin
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Experimental Represent

Table 2: Accuracy of region classification and point classification

MNIST CIFAR-10

Region cls. Point cls. Region cls. Point cls.

Normal Adv. tr. Normal Adv. tr. Normal Adv. tr. Normal Adv. tr.
Benign 99%  98% 99% 98% 100% 100% 100% 100%
OptMargin 4% 7% 0% 0% 4.28% 4.78% 4.16% 4.72%
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Experiment

Figure 1: Decision boundary distance from single sample images
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Figure 2: Minimum and median decision boundary distances for a sample of images:
blue(benign), Green(OptMargin)
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Conclusion a

€ benefits of examining large neighborhoods around a given input in input
space

€ We demonstrated an effective OPTMARGIN attack against a region
classification defense, which only considered a small ball of the input space
around a given instance.

€ The comprehensive information about surrounding decision boundaries
reveals there are still differences between our robust adversarial examples
and benign examples.

€ It remains to be seen how attackers might generate adversarial examples
that better mimic benign examples’ surrounding decision boundaries.

20



€ Read the paper

€ Download the code from github

€ Read the code to match the code with the paper

€ Represent the experiment (running for more than a month):
« OptMargin attack
« Decision boundary analysis
« Train a classifier to defend the attack (not achieved)

€ Write scripts to analysis collected experiment data

€ Prepare the presentation and jupyter notebook

21
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