
CuSH: Cognitive Scheduler for Heterogeneous
High Performance Computing System

Citation: Giacomo Domeniconi, Eun Kyung Lee, and Alessandro Morari.
2019. CuSH: Cognitive ScHeduler for Heterogeneous High Performance
Computing System. In Proceedings of DRL4KDD 19: Workshop on Deep

Reinforcement Learning for Knowledge Discovery (DRL4KDD).

Reproduced by: Vanamala Venkataswamy, Swaroopa Dola

12/06/2019

1

UVA CS 6316: Machine Learning : 2019 Fall
Course Project: Deep2Reproduce @
https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Motivation

2

Resource Management is everywhere

source: [6]

Motivation

3

An Example online multi-resource allocation
problem, e.g. CPU, memory.

Many factors to consider: NP-hard
CPU + GPU + Memory

source: [6]

Motivation

• Increased complexity of resource management
algorithms.

• Resource manager/scheduler should account for
data locality, levels of parallelism, frequency of
collective synchronizations etc.

• Cost model complexity for a job scheduler
– job dimensions
– queue size
– execution time and available resources
– job locality - shared datasets 4

Motivation

Current approach

- Assume a simple system model
- Come up with a set of heuristics
- Iteratively test and tune the heuristics in real system

Alternative approach

- Reinforcement Learning: Learning via interacting with
the environment.

5Datacenter cooling

Background - Schedulers

● Job placement policies
– First Come First Serve (FCFS)
– Shortest Job First (SJF)
– Dominant Resource Fairness (DRF)
– Least Attained Service (LAS)
– more...

• Traditional Heuristics based schedulers use a
combination of these policies to
maximize/minimize some objective function.

Background - Reinforcement Learning

7

Sutton and Barto: The agent-environment interaction in reinforcement learning.[5]

In RL, the data is not Independent and Identically
Distributed. The outcome depends on the previous
state(s) and action(s).

Reward Hypothesis: All goals can be described as
maximising expected cumulative reward.

Related Work

• DeepRM: Uses RL for cluster scheduling by modeling
the cluster state using image-like representation. (2016)

• Gandiva: Utilizes domain-specific knowledge to improve
latency and efficiency of training DL models in a GPU
cluster. (2018)

• Decima: Uses RL for scheduling job in Tensorflow like
framework. Decima heavily focuses on DL jobs that
have DAG like dependencies, optimizing for placing
DAG tasks on the cluster. (2019)

8

Claim / Target Task

• Claim: Reinforcement Learning agent can
learn better scheduling policies for given
cluster constraints than heuristics based
schedulers.

• CuSH
– Employs DNN and Reinforcement Learning to achieve

optimal performance.
– Learns to make better scheduling choices by training

on a dataset that contains jobs history, available
resources and performance characteristics.

9

An Intuitive Figure Showing WHY Claim

10
Reference: CuSH paper

Proposed Solution

• Scheduler as two level system i.e two separated
DNNs for job selection and policy allocation.

• The reward function dynamically adjusts based on
application.

• RL environment as cluster with
– N - no. of jobs
– R - resources
– Sr - Fixed no.of resource per node
– Q - jobs to be scheduled 11

Proposed Solution

• Two allocation policies
– Depth-first policy: assign requested resources

utilizing as few nodes as possible.
– Breadth-first policy: assign requested

resources utilizing as many nodes as possible

• Two different workloads
– Compute intensive
– Network intensive

12

Cluster scheduling problem setting

• Allocate multiple resources

• Resource requests are
known

• Non-preemptive jobs

Goal: Minimize averaged
normalized turnaround time

13

Cluster

Ti
m

e

 T
im

e

CPU

Memory

Job Slots

GPU

source: [6]

Implementation

Two main scheduler modules

1. Job selector module (JSM)
2. Policy selector module (PSM)

14

15

RL - Observe

source: [6]

16

RL - Take action

Naively considering all possible state/action pairs will
be exponential cost.

Solution: Sequential allocation

17

RL - Take action

Naively considering all possible state/action pairs will
be exponential cost.

Solution: Sequential allocation

18

RL - Take action

Get Reward:

A penalty of (-1/job_len) for every unfinished job

Implementation

19

The θ1 are network
parameters of the JSM
and θ2 parameters of
the policy selector.

Then πθ1 and πθ2 as
the JSM and PSM
networks, respectively.

source: cuSH paper

Experimental Strategy

• CuSH: Code not open sourced

• DeepRM [2][6] by MIT is open source. CuSH
is based on this work.

20

CuSH vs. DeepRM

21

Differences CuSH DeepRM

Architecture JSM and PSM JSM

Key Metric averaged normalized
turnaround time

average job slowdown

Input format Wait time for jobs in
queue

Binary matrices

Job duration Bounded Unbounded

Resource Locality Yes No

Workload Type Yes No

Experimental Results

22

Graphs generated by presenters, using DeepRM [2] code

Experimental Results

23
Graphs generated by presenters, using DeepRM [2] code

Conclusion and Future Work

• Resource management using traditional Heuristics
based scheduling does not always give best
schedule.

• Better job scheduling subject to constraints can be
achieved using DNN and RL.

• CuSH - an RL implementation outperforms the best
heuristic-based approaches, delivering up to 19%
lower normalized turnaround time.

24

Work distribution

25

Paper selection Vanamala, Prof. Qi

Paper review slides Equal contribution

Experiments Individually ran DeepRM
code and generated
results/graphs

Slides with results Equal contribution

Questions?

Thank You for your attention!

26

References

[1] Learning Scheduling Algorithms for Data Processing Clusters. Hongzi Mao,
Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, Mohammad
Alizadeh. SIGCOMM-2019.

[2] Resource Management with Deep Reinforcement Learning. Hongzi Mao,
Mohammad Alizadeh, Ishai Menache, Srikanth Kandula. HotNets-2016.

[3] Gandiva: Introspective Cluster Scheduling for Deep Learning. Wencong
Xiao et. al. OSDI-2018.

[4] High-Performance Job-Shop Scheduling With A Time-Delay TD(lambda)
Network. Zhang, W., Dietterich, T. G., (Advances in Neural Information
Processing Systems. 1996.

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. 2nd Edition. 2015.

[6] https://github.com/hongzimao/deeprm
27

Backup Slides

28

Data Summary

Input for the NN

– Merge cluster and queue into one matrix
representation.

– The cluster nodes are concatenated together along
the x-axis, forming R matrices of N x Sr ×T size,
which is the same size of the representation of the
waiting jobs.

– The input of the job scheduler module is a three-
dimensional matrix of size (�R N · Sr) × (T) × (Q +
1)

29

Implementation

1. Job selector module (JSM)
– Current state as input image: jobs in the

cluster, waiting jobs, resources.
– a CNN using 16 2x2 filters, stride=1 and

without padding followed by a ReLU, batch
normalization and a softmax layer to predict
probability for each action.

30

Implementation

2. Policy selector module (PSM)

• goal of selecting which policy to use to allocate
a job that has to be scheduled.

• The module is trained with policy gradient.
• The value return vt is only based on the local

action and its reward value rt.
• The return is the locality penalty (vt =rt =pj), that

is calculated using the projected workloads data.

31

Data Summary

32

source: cuSH paper

Conclusion and Future Work

• Current model requires workload type to
be specified by the user.

• Better approach would be to use dynamic
scheduling
– unspecified job types can be classified as

“unknown”
– After few executions, the job type can be

automatically classified with a ML model

33

DeepRM Architecture

34

Source: DeepRM [2] paper

