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Motivation

Explain the generalization ability of very high capacity neural
networks:
« Zhang[1] suggest SGD may provide implicit regularization by
encouraging low complexity solutions to the optimization.

» Others Explore the effect of margins on generalization error

Explain Why the neural network is surprisingly resistant to overfitting

Large datasets needed for training properly

The way neural network reaches to variance reduction is mysterious.

How about on much richer class of small datasets?



Background

« Great deal of recent research are aimed to explain the generalization

ability of very high capacity neural networks:

« There exists limitations in previous experiments, concentrated on a

small set of image classification tasks:

» Over half of the papers in NIPS 2017, ICML 2017
« MNIST, CIFAR-10, CIFAR-100, ImageNet share same characteristics

« Similar problem domain, very low noise rates, balanced classes, relatively large

training sizes



Related Work

Zhang,C.(2017)[1] Understanding deep learning requires rethinking
generalization, ICML

« Stochastic Gradient Descent may provide implicit regularization by encouraging

low complexity solutions to the neural network optimization problem

Bartlett P.L et al.(2017).[2] Spectrally-normalized margin bounds for
neural network. NIPS

Liang, T. at al.(2017).[3] Fisher-rao metric, geometry, and complexity pf
neural netowrks. arXiv

« Explore the effect of margins on generalization error, similar to the margin-based

view of Adaboost in the boosting literature that bound test performance in terms of

the classifier’s confidence in its predictions.

Other:
* Investigate the sharpness of local minimum found by training a neural network
with SGD 4



Claim / Target Task

« The central aim of the paper is to identify the variance
stabilization that occurs when training a deep neural network
 Dedicated to decomposing a neural network into an
ensemble of sub-networks (low bias, low variance)

« Similar manner as random forest



Proposed Solution I

» To establish a view that a network has a natural representation as an
ensemble classifier
* Network Decomposition:
» Given a regular network in a binary classification setting. In the case of

a network with L hidden layers, each layer with M hidden nodes:

oz =whtlg(zY),withl =0,... .. L
« flx) = a(z"*h)

¢ is sigmoid function, g is activation function, W*1 € R*M Wt =
RM*P and Wt € RM*M for| = 2,...,L,and z° = x

* In this paper, L =10, M = 100, g is ELU activation function



Proposed Solution II

« One way for decomposition is at the final hidden layer:

« Fix aninteger K < M; and another matrix « € R *X, with
Yk=1Qmyr = Wikt form=1,....M

« Final logit output as a combination of units from the final hidden layer:
. ZW(x) = WL+1g(ZL(x))
© = Ym-1 W1L,:;-119(Zrln (%))
© = Yh=12k=1 O‘m,kg(zvln (%))
* = Yke1 Lm=1 Om kg (2 (X))
* = Yk=1 fi(X)

* With fi (%) = Zm=1 %mk g (2 (X))
* In words, we have decomposed the final layer of the network into a

sum of component networks at the logit level
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Proposed Solution III

* Ensemble Hunting:
* We want to search for a set of ensemble components that are both diverse
and low-bias.
« Low-bias: impose restriction that each sub-network achieves very high
training accuracy, 100% in the setting, for each sub-network f;
« Diversity: Desire each in the ensemble should be built from a different
part of the full network, to make this happen, require the columns of a
are sparse, non-overlapping, and the approach is to just simply force a
random selection of half the entries of each column to be zero
» For each of the K columns of a, sampled integers

(My g, My g .., M2, ) UNIfOrmly without replacement from 1 to M



« We need to use linear programming to find a matrix ae RM*K that satisfied

the required constraints:
* Yke1Omi =Wigt,1<sm<M
. M
* Uik =0, 1S]S;,1Sk£1(

o I Umkd(Zn(X)y; =0,1<i<nl1<k<K



An Intuitive Figure Showing WHY Claim I

Sample 400 points as training
set under the following
distribution:

1 ||x||, 0.3
0.15 otherwise

p(y =1|x) = {

10000 points as test set

(¢) Random Forest (d) Single Tree



Decision Tree
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Sub-Network Decision Boundary




mplemer

= Three classifier trained, random forest classifier; neural networks

with dropout; neural networks without dropout

= Neural Networks:

10 hidden layers

100 nodes per layer

200 epochs of gradient descent using Adam optimizer with learning rate of 0.001
He-initialization for each hidden layer

Elu activation function

Dropout with keep rate 0.85, serving as regularization, ridge-type penalty

= Random forest:

500 trees, \/p, p is the number of features in the dataset
15



Total 116 small-sized datasets from UCI Data Repository

Datasets span a wide variety of domains, including agriculture,
credit scoring, health outcomes, ecology, and engineering

applications etc.
Highly imbalanced, non-trivial Bayes error rates, discrete features

The median number of training cases is 601, the smallest only 10

observations.

Number of features range from 3 to 262, categorical features
included in half of the datasets, number of classes range from 2 to

100
16



CATEGORICAL CLASSES FEATURES

N

MIN

25%
50%
75%
MAX

0 2 3
0 2 8
4 3 LS
8 6 33
256 100 262

10
208
601
2201
67557

Table 1: Dataset Summary
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= RF outperforms unregularized NN on 72 out of 116 datasets by small

margin, the mean difference in accuracy is 2.4%, with P value less

than 0.01 through Wilcox signed rank test
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Figure 3: Plots of cross-validated accuracy. Each point corresponds to a data set.
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Using dropout helps when fitting noisy data sets, it is surprising that

the absence of dropout doesn’t lead to a collapse in performance.

Using K=10 to decompose the network, each with 100% training
accuracy, applied on datasets with at lease 500 observations, 80-20

train/test split randomly 25 times.

Errors made by the sub-networks tend to have low correlation,

which is the precise motivation for the random forest algorithm
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Conclusion and Future Work

« Large neural network generalize well on small, noisy, data sets.
* neural networks can be trained on small data sets with minimal tuning
» Neural Networks have a natural interpretation as an ensemble of low-

bias classifiers whose pairwise correlations are less than one.

* Future work aims to discern a mechanism for the decorrelation
observed, and explore the link between decorrelation and

generalization
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