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Motivation
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Problem: GANs are hard to train and gradient descent optimization results no convergence.

Main Question in this paper: 

How will GAN training become locally asymptotically 
stable in the general case?

Generative Adversarial Networks
(GANs), proposed by Goodfellow in 
2014, is a powerful latent variable 
model, showing dominant abilities to 
generate realistic image samples 
after training on sample data.



Claim / Target Task
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Tasks in this paper
1. Proposed Dirac-GAN configurations: Prove the 

necessity of absolute continuity.
2. Analyze unregularized and common regularized 

GAN training algorithm stability on Dirac-GAN
3. Proposed simplified gradient penalties leads to 

convergence



Background

GANs are defined by a min-max two-player game between a discriminative network Dψ(x) 
and generative network Gθ(z) 

Objective function:

Our goal when training GANs is to find a Nash-equilibrium.

(Mescheder et al. (2017) ) shown that local convergence of GAN training near an 
equilibrium point (θ ∗ , ψ∗ ) can be analyzed by looking at the spectrum of the Jacobian F0 h 
(θ ∗ , ψ∗ ) at the equilibrium:

Eigenvalues with absolute value bigger than 1: Not Converge 
Eigenvalues with absolute value smaller than 1: Converge with linear rate O(|λmax| k )
Eigenvalues are all on the unit circle: Converge (sublinera rate), Diverge or Neither 



Related Work
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Mescheder et al. (2017)
When λ^2 is very close to zero, it is very likely to get imagery number for λ. Thus, we can 
require intractably small learning rates to achieve convergence.

Sønderby et al., 2016; Arjovsky & Bottou, 2017:
Show that for common use cases of GANs, we don’t have the property of absolute 
continuity for the data distributions like natural images.

Techniques that lead to local convergence:

● Arjovsky et al. (2017): Propose WGAN training
● Sønderby et al., 2016; Arjovsky & Bottou, 2017: Propose instance noise
● Roth et al., 2017: Propose zero-centered gradient penalties

...



Proposed Idea (1)

Proposed Counter-example:
● Dirac-GAN 

○ Not absolute continuity → Nonconvergence 
○ No optimal discriminator parameter (except 0)
○ No incentive for the discriminator to move to the 

equilibrium when generator is the target distribution.



Vector Field of Dirac-GAN for Different 
Training Algorithm
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Animated Convergence Results for 
Unregularized GAN vs Gradient Penalty 
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Unregularized →  Not 
always stable

WGAN and WGAN 
GP→  Not always 
stable

Instance noise & zero-
centered & gradient 
penalties -> stable



Proposed Solution (1)

Inspired from zero-center gradient penalties (Roth et al., 2017)

Simplified regularization term:
-

-



Data Summary

There are in total three different datasets:

- 2-D Example (2D Gaussian,Line,Circle,Four Lines) 
• (not implemented)

- CIFAR-10 dataset
- CelebA-HQ dataset at resolution 1024×1024.（Karras, T., Aila, T., 

Laine, S., and Lehtinen, J. Progressive growing of gans for 
improved quality, stability, and variation. CoRR, abs/1710.10196, 
2017.）
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Experimental Results
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Experimental Results

Good behavior of WGAN-GP is surprising

Explanation in the next slide
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Experimental Analysis
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We see that the R1- and R2-regularizers  and WGAN-GP perform similarly 
and they achieve good results

While we find that unregularized GAN training quickly leads to mode-
collapse for these problems, our simple R1-regularizer enables stable 
training. 

Reason:
WGAN-GP oscillates in narrow circles around the equilibrium which might 
be enough to produce images of sufficiently high quality.



Reproduced Results
• Sample Output (Regularized) on different datasets, showing with 

regularizer we can have stable training:
• - Celebrate -

Bedroom

• - Tower
- Bridge
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Reproduced Results

15



Reproduced Results

Loss with unregularized →  Not Converge
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Reproduced Results

Unregularized → not converging!
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Conclusion and Future Work

Results we have so far:

- Negative hyperparameter: No convergence
- For eqn above: the second term has magic properties:

○ Near Nash Equilibrium, No rotation
○ Away from the Nash Equilibrium, transition from 

rotational convergence to non-convergence
- Convex combination of R1 and R2 have same convergence 

results.
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- Unregularized  gradient based GAN optimization is not always locally 
convergent.

- WGANs and WGAN-GP do not always lead to local convergence 
whereas instance noise and zero-centered gradient penalties do.

- Local convergence achieved for simplified zero-centered gradient 
penalties under suitable assumptions.
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Conclusion and Future Work (Cont.)

Conclusion Cont.

Future Work 

- Extend the theory to the non-realizable case (Not well understood or 
well-behaved to be modelled accurately)
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Working Split

• Kaiming Cheng: Coding, Model Training, Presentation

• Zijie Pan: Concept Research, Coding, Presentation

Thank you!
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