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Generative Adversarial Networks
(GANSs), proposed by Goodfellow in
2014, is a powerful latent variable
model, showing dominant abilities to
generate realistic image samples
after training on sample data.

Problem: GANs are hard to train and gradient descent optimization results no convergence.

Main Question in this paper:

How will GAN training become locally asymptotically
stable in the general case?



Claim / Target Task

Tasks in this paper

1. Proposed Dirac-GAN configurations: Prove the
necessity of absolute continuity.

2. Analyze unregularized and common regularized
GAN training algorithm stability on Dirac-GAN

3. Proposed simplified gradient penalties leads to
convergence



Background

GANSs are defined by a min-max two-player game between a discriminative network Dy(x)
and generative network G0(z)

Objective function:

ngn max (Exnpana 108 D(2)] + Emoproven: L0g(1 — D(G(2))])

Our goal when training GANSs is to find a Nash-equilibrium.

(Mescheder et al. (2017) ) shown that local convergence of GAN training near an
equilibrium point (8 * , w* ) can be analyzed by looking at the spectrum of the Jacobian Fo h
(6 x , wx ) at the equilibrium:

Eigenvalues with absolute value bigger than 1: Not Converge
Eigenvalues with absolute value smaller than 1: Converge with linear rate O(JAmax| k )
Eigenvalues are all on the unit circle: Converge (sublinera rate), Diverge or Neither




Related Work

Mescheder et al. (2017)

When A2 is very close to zero, it is very likely to get imagery number for A. Thus, we can
require intractably small learning rates to achieve convergence.

Sonderby et al., 2016; Arjovsky & Bottou, 2017:

Show that for common use cases of GANs, we don’t have the property of absolute
continuity for the data distributions like natural images.

Techniques that lead to local convergence:

e Arjovsky et al. (2017): Propose WGAN training
e Sonderby et al., 2016; Arjovsky & Bottou, 2017: Propose instance noise
e Roth et al., 2017: Propose zero-centered gradient penalties



Proposed Idea (1)

Proposed Counter-example:
e Dirac-GAN
o Not absolute continuity — Nonconvergence
o No optimal discriminator parameter (except 0)
o No incentive for the discriminator to move to the
equilibrium when generator is the target distribution.
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Method

Local
convergence
(a.c. case)

Local
convergence

(general case) '

unregularized (Goodfellow et al., 2014)
WGAN (Arjovsky et al., 2017)
WGAN-GP (Gulrajani et al., 2017)
DRAGAN (Kodali et al., 2017)
Instance noise (Senderby et al., 2016)
ConOpt (Mescheder et al., 2017)
Gradient penalties (Roth et al., 2017)
Gradient penalty on real data only
Gradient penalty on fake data only
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(b) Non-saturating GAN
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(g) Gradient penalty

(h) Gradient penalty (CR)



Animated Convergence Results for
Unregularized GAN vs Gradient Penalty
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Inspired from zero-center gradient penalties (Roth et al., 2017)

Simplified regularization term:

Ri(¢) := %Epp(m) IV Dy (2)|°]

© Ra(0,%) == 3 Epy(a) [IVDy (@)]?]




Data Summary

There are in total three different datasets:

- 2-D Example (2D Gaussian,Line,Circle,Four Lines)
e (not implemented)
- CIFAR-10 dataset
- CelebA-HQ dataset at resolution 1024x1024. (Karras, T., Aila, T.,
Laine, S., and Lehtinen, J. Progressive growing of gans for
improved quality, stability, and variation. CoRR, abs/1710.10196,
2017.)
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Experimental Results

inception score

—— no regularizer
Ri1 regularizer (y
—— R2 regularizer (y

—— WGAN-GP (ng=1, y= 10)
——— WGAN-GP (ng=5, y= 10)

= 10)
= 10)

o 2000

(resnet_5_0): ResnetBlock(
(conv_0@): Conv2d(1024, 1024,
(conv_1): Conv2d(1024, 2048,
(conv_s): Conv2d(1024, 2048,

)

(fc): Linear(in_features=32768,

)

4000 6000 8000 10000
Wall clock time [sec]

kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
kernel_size=(1, 1), stride=(1, 1), bias=False)

out_features=1, bias=True)

https://s3.eu-central-1.amazonaws.com/avg-projects/gan_stability/models/lsun_bedroom-df4e7dd2.pt

=> Loading checkpoint from url...

Computing inception score...

12000

/home/ec2-user/anaconda3/envs/pytorch_p36/1lib/python3.6/site-packages/torch/nn/functional.py:2539: UserWarni
g: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please spec
fy align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.

"See the documentation of nn.Upsample for details.".format(mode))

Inception score: 2.4715 +- 0.0223

Creating samples...

| 1/1 [00:02<00:00, 2.12s/it
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Experimental Results

: output/default

Good behavior of WGAN-GP is surprising  vaanad
Explanation in the next slide
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Experimental Analysis

We see that the R1- and R2-regularizers and WGAN-GP perform similarly
and they achieve good results

While we find that unregularized GAN training quickly leads to mode-
collapse for these problems, our simple R1-regularizer enables stable
training.

Reason:

WGAN-GP oscillates in narrow circles around the equilibrium which might
be enough to produce images of sufficiently high quality.
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Reproduced Results

Sample Output (Regularized) on different datasets, showing with
regularizer we can have stable training:

- Celebrate
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Reproduced Results

def discriminator_trainstep(self, x_real, y, z):
toggle_grad( .generator, False)
toggle_grad(self.discriminator, True)
self.generator.train()
self.discriminator.train()
self.d_optimizer.zero_grad()
x_real.requires_grad_()
d_real = self.discriminator(x_real, y)

dloss_real = self.compute_loss(d_real, 1)

if self.reg_type == 'real' or self.reg_type ==
dloss_real.backward(retain_graph=True)

reg = self.reg_param * compute_grad2(d_real, x_real).mean()

reg.backward()
else:
dloss_real.backward()

'real_fake':

4.1. Simplified gradient penalties

Our analysis suggests that the main effect of the zero-
centered gradient penalties proposed by Roth et al. (2017)
on local stability is to penalize the discriminator for deviat-
ing from the Nash-equilibrium. The simplest way to achieve
this is to penalize the gradient on real data alone: when the
generator distribution produces the true data distribution
and the discriminator is equal to 0 on the data manifold, the
gradient penalty ensures that the discriminator cannot create
a non-zero gradient orthogonal to the data manifold without
suffering a loss in the GAN game.

This leads to the following regularization term:

Ri(¥) = I Bpoo) [IVDs@IF].  ©
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Reproduced Results

Loss with unregularized — Not Converge

v params = dict(

—1.30 A batch_size=512,
disc_learning_rate=1le-4,
gen_learning_rate=1le-4,
betal=0.5,

—1.35 4 epsilon=1e-8,
max_iter=100001,

viz_every=1000,
z_dim=256,

—1.40 1 ‘ x_dim=2,
unrolling_steps=0,
regularizer_weight=0,

—1.45

—1.50 A

—1.55 1
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16



Reproduced Results

Unregularized — not converging!
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Conclusion and Future Work

- ~ 2
Results we have so far: /\1/2 — _3 = = \/T — f'(0)

- Negative hyperparameter: No convergence
- For eqn above: the second term has magic properties:
o Near Nash Equilibrium, No rotation
o Away from the Nash Equilibrium, transition from
rotational convergence to non-convergence
- Convex combination of R1 and R2 have same convergence
results.
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Conclusion and Future Work (Cont.)

Conclusion Cont.

- Unregularized gradient based GAN optimization is not always locally
convergent.

- WGANs and WGAN-GP do not always lead to local convergence
whereas instance noise and zero-centered gradient penalties do.

- Local convergence achieved for simplified zero-centered gradient
penalties under suitable assumptions.

Future Work

- Extend the theory to the non-realizable case (Not well understood or
well-behaved to be modelled accurately)
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