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Main goal :       detecting pairwise and high-order feature interactions in 
a dataset by re-interpreting weights learned by a MLP.
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➢Applications
• Healthcare: Drug–drug interaction (DDI),  co-occurrence  of a group of symptoms
• Scientific discoveries, hypothesis validation

➢Challenges
• p features: Search space size  - O(2p) possible interactions

➢Contribution of NID (Neural Interaction Detection)
• Non-linear feature interactions.
• Invariant of order 
• Efficiency

Motivation
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Interaction: groups of features that have joint effects (non-additive)

for predicting an outcome. 

Geometric example Simple examples of explicit functions

Definition
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Core Insight Feedforward NNs

Preliminaries (2/3)
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Feature interactions are created at hidden units with non-linear activation 

functions. 
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The influences of the interactions are propagated layer-by-layer to the final

output. 
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Core Insight Feedforward NNs
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• In general, the weights in a NN are nonzero      all features are interacting       large 

solution space of interactions.

➢Assume first layer hidden units are especially good at modeling interactions 

➢ Interaction strength.
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Interaction strength

Defining the metric (1/2)
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2. Influence of hidden units: multiplication of the aggregated weight 

Strength          of an interaction,            at the i-th unit in the first hidden layer

1. Interactions created at the first hidden layer.

Summarize feature weights between l = 0 and l = 1 through function μ:
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NID example
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Interactions Strength
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Interactions Strength

top-K
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NID: Neural Interaction detection

Interaction detection (1/3) 19

1. Train a Lasso-regularized MLP.
2. Interpret learned weights to obtain a ranking of interaction candidates.
3. Determine a cutoff for the top-K interactions.

Data often contains both
➢ statistical interactions.
➢main effects: univariate influences of variables on an outcome variable.

• Model separately 2 simple networks: (MLP, MLP-M)
• Learn jointly with L1-regularization only on the interaction part to cancel out the main effect 

as much as possible



Introduction/ Preliminaries (1/3)

NID: Neural Interaction detection
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1. Train a Lasso-regularized MLP.
2. Interpret learned weights to obtain a ranking of interaction candidates.
3. Determine a cutoff for the top-K interactions.

A greedy algorithm generates a ranking of interaction candidates 
• at each hidden unit, it only considers the top-ranked interactions of every order based on
their interaction strengths (set μ=min(.)).  

➢ drastically reduces the search space of potential interactions (O(hp) tests)
➢ but still considers all orders.
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NID: Neural Interaction detection

Interaction detection (3/3) 21

1. Train a Lasso-regularized MLP.
2. Interpret learned weights to obtain a ranking of interaction candidates.
3. Determine a cutoff for the top-K interactions.

Gradually add top-ranked interactions to the GAM, increasing K, until GAM performance on a
validation set plateaus.

captures main effects captures the interactions
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Experiments

Experiments (1/4)
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❖ Tasks:
• Pairwise interaction detection - Synthetic functions 

The interaction strengths shown are normally high at the cross-marks!
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Experiments
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❖ Tasks:
• Pairwise interaction detection - Real data

California Housing Prices
{1,2}: longitude and latitude!
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Experiments
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❖ Tasks:
• Pairwise interaction detection - Real data

Number of Bike-share Users
{4,7}: hour and working day!
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Experiments

Experiments (3/4)
25

• Higher order interaction detection - Synthetic functions 
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Experiments

Experiments (4/4)
26

❖ Tasks:
• Higher order interaction detection - Synthetic functions 

Adding the first interaction significantly reduces RMSE.
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Take - home points

Almost there… 27

• Neural networks for a traditional statistical problem!
• Accurately detect general types of interactions
• Without assuming any explicit interaction order
• Without searching an exponential solution space of interaction candidates.
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Thank you!


