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Background and Motivation

● Conventional wisdom in deep learning states that increasing depth improves
expressiveness but complicates optimization.

● Momentum, adaptive regularization and AdaGrad.
● This paper conveys a rather counterintuitive message: Increasing depth can

accelerate optimization.



An Intuitive Figure Showing WHY Claim
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Claim/Target Task

● If increasing depth leads to faster training on a given dataset, how can one 
tell whether the improvement arose from a true acceleration 
phenomenon, or simply due to better representational power (the 
shallower network was unable to attain the same training loss).

● Linear Neural Network.
● Adding layers does not alter expressiveness; it manifests itself only in the 

replacement of a matrix parameter by a product of matrices – an 
overparameterization.
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Related Work
● Theoretical study of optimization in deep learning is a highly active area of research. Works along

this line typically analyze critical points (local minima, saddles) in the landscape of the training
objective, either for linear networks.

● Other works characterize other aspects of objective landscapes, for example Safran & Shamir
(2016) showed that under certain conditions a monotonically descending path from initialization to
global optimum exists.

● For linear networks. Like ours, these works analyze gradient descent through its corresponding
differential equations. Fukumizu (1998) focuses on linear regression with l2 loss, but does not
consider the effect of varying depth.

● Use of preconditioners to speed up optimization is also a well-known technique, including classic
Newton’s method.In terms of combining momentum and adaptive precondition- ing, Adam (Kingma
& Ba, 2014) is a popular approach,



Proposed Solution - theoretical derivation
● An N-layer linear neural network, can be seen as a function:

Denote:                                        which is a k×d vector

● At each time of gradient descent:

𝜂: learning rate; 𝜆: weight decay coefficient 



● The gradient of each parameter can be seen as a function of t, given learning 
rate is very small

● Assume the following stands, which is approximately true if parameters are 
initialized closed to zero:

● Then we can deduct that this equation also stands for ∀t ≥ t0.
● This leads to the expression of We along t, returning back to the discrete 

situation, we can get update rule for We:



● To make it more interpretable, we can convert parameter matrix into a vector 
in column-first order, then the equation is:

Actually equals to 

whose eigenvectors are:

with corresponding eigenvalues: 

Kronecker product

left/right singular 
vector of We

singular values of We



The transformation applied to the gradient can be seen as a preconditioning, 

which favors directions that correspond to singular vectors whose presence in We

is stronger.

Since parameters are initialized near zero, the location in parameter space can 

also be regarded as the overall movement made by the algorithm.

Thus, overparameterization promotes movement along directions already taken by 

the optimization, and therefore can be seen as a form of acceleration



Single-output Case

Two parts:

● Adaptive learning rate
● Amplify gradient on direction of We



Overparameterization effect cannot be attained via regularization

How to prove?

Brief summary:

● is not gradient field of any function

● Assume there exists such a function

● We can find a closed curve, s.t. Linear Integral of F(W) over this curve does 

not vanish.

● This contradicts with the gradient theorem, which says for a continuously 

differentiable function h, and a piecewise smooth curve, it stands: 



Remember that the whole theoretical derivation relies on two approximation:

1. is true for initialization

1. Learning rate is very small so that the update rule can be seen as a 
continuous function.

To fully justify the effects of overparameterization, experiments are needed.
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Implementation Toolbox



Data Summary
Gas Sensor Array Drift at Different Concentrations Dataset

● Obtained from UCI Machine Learning Repository
● Only ethanol data used
● Scalar regression task with 2565 examples comprising 128 features
● Perform scaling before the experiments (min-max scaling, Z-score 

normalization)

MNIST dataset

● Embedded in a built-in tutorial in TensorFlow
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Experimental Results
Experiment 1

This experiment shows 

that the theoretical 

update rule can also 

empirically explain the 

update of deep linear 

neural network.

We can also see that 

the width of network is 

not related to the 

converging speed.



Experimental Results

Experiment 1

L2 loss/ 2 layer L2 loss/ 3 layer

L4 loss/ 2 layer L4 loss/ 3 layer



Experiment 1 Code

emulate function
implements the theoretical
update rule of linear neural
network. 



Experiment 1 Code

Step 1. Calculate loss

Step 2. Get gradient

Step 3. Calculate adaptive learning rate scalar 

Step 4. Calculate the projection of gradient on the direction of W

Step 5. Update W



Experiment 1 Code

This function simply trains a 
linear neural network using 
gradient descent.



Experimental Results

Figures show the convergence of the 
gradient descent of optimization of single 
layer against depth-2 and depth-3.

With L2 loss, deeper networks show 
slower convergence rate. However, with 
L4 loss, consist of quantitative analysis, 
depth indicates optimization.

Gradient descent optimization of single 
layer model vs. linear networks of depth 2 
and 3

Experiment 2 



Experimental Results
Experiment 2 



Experiment 3 (Part 1) 

Setting

● Linear neural network:
AdaGrad
AdaDelta
Overparameterization

● Epoch number:  
600,000 epochs



Experiment 3 (Part 1) 

Setting

● Linear neural network
AdaGrad
AdaDelta
Overparameterization

● Epoch number:
600,000 epochs

● Choose the best model 
according to the loss in 
the last epoch



Experiment 3 (Part 1) 

Setting

● Linear neural network
AdaGrad: 128 * 1
AdaDelta: 128 * 1
Overparameterization: 128 * 1, 1 * 1, 1 * 1

● Learning rates for each model to search:
[0.00001, 0.00005, 0.0001, 0.0005, 0.001, 
0.005, 0.01, 0.05, 0.1, 0.5]

● Choose the best model according to the 
loss in the last epoch

● Epoch number:  600,000 epochs



Experiment 3 (Part 1): Result 

In this paper’s setting, overparameterization is a more effective optimization strategy than some 

carefully designed algorithms tailored for convex problems.



Experiment 3 (Part 2) 

● Fixed learning rate: 0.0005
(Learning rate is 0.001 in the paper.)

● Epoch number:  60,000 epochs

Setting

● Linear neural network with the optimizer Adam:
1 layer: 128 * 1
2 layers: 128 * 1, 1 * 1
3 layers: 128 * 1, 1 * 1, 1 * 1



Experiment 3 (Part 2): Result 

● When introducing overparameterization simultaneously with Adam, further acceleration is attained.

● This suggests that at least in some cases, not only plain gradient descent benefits from depth, but 
also more elaborate algorithms commonly employed in state of the art applications.



Experiment 4 (MNIST Convolutional Network)

● This is an example implicit acceleration of overparameterization on
a nonlinear model by replacing hidden layers with depth-2 linear
networks

● Two minor changes:

Hidden dense layer: 3136×512 weight matrix replaced by multiplication of 3136×512
and 512×512 matrices.

Output layer: 512×10 weight matrix replaced by multiplication of 512×10 and 10×10
matrices



Code



Result

● As reported above for linear 
networks, it is likely that for 
non-linear networks the effect 
of depth on optimization is 
mixed – some settings 
accelerate by it, while others 
do not. 

● Comprehensive 
characterization of the cases 
in which depth accelerates 
optimization warrants much 
further study.



Experimental Analysis

● Experiments are consistent with the predicted results from theoretical derivation.

● Experiments are conducted with Linear Neural Network to rule out the factor of 

expressiveness.

● Experimental results indicates that overparameterization by depth can induce a faster model 

training based on gradient descent over a convex problem.

● With sanity test, the experiment with convolutional network indicates that 

overparameterization could also be useful in some non-idealized deep learning settings.
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Conclusion and Future Work
Overparameterization by depth can accelerate optimization.

● Linear neural networks
○ A preconditioning scheme: a combination between certain forms of adaptive learning rate and 

momentum.
○ Depends on depth, instead of width: minimal computational price.

● Non-linear neural networks
○ Challenging to theoretically analyze
○ Empirically, replacing an internal weight matrix by a product of two accelerates optimization, 

with expressiveness unchanged

Analysis is based on gradient descent over classic convex problems.

How about other explicit acceleration methods? Momentum? Adagrad?

Can we quantify the effect?
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