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Background

Deep neural networks are used on a variety of classification problems 
(image classification, facial recognition) very effectively but are not 
robust to adversarial examples

Small changes in input signal can lead to large changes in neural net 
output

Shape and robustness of perturbed log-odds statistics are different if 
x = x* versus x = x* + Δx



Motivation
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Robustification is usually limited to including adversarial examples in 
training data

Typical methods of defending neural networks against adversarial 
attacks not effective on well-designed attacks

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision: A survey. CoRR, abs/1801.00553, 2018.



Related Work
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● Iterative Adversarial Attacks
○ Madry et al., 2017; Kurakin et al., 2016 -- Projected Gradient Descent AKA Basic Iterative 

Method. Iconic iterative adversarial attack:

○ Carlini & Wagner, 2017b
● Detection

○ Grosse et al., 2017 -- statistical tests can detect adversarial examples because adversarial 
examples come from a dissimilar distribution than the natural data does

○ Metzen et al., 2017 -- add “detector” classification subnetwork that uses intermediate 
feature representations to distinguish between natural/adversarial activations.

○ Feinman et al., 2017 -- test whether inputs lie in low-confidence areas of model.
○ Xu et al., 2017 -- compare model predictions on “natural” input versus feature-squeezed 

version of that input, diff results and compare to a chosen threshold. 
○ Also mentioned: Song et al., 2017; Li & Li, 2017; Lu et al., 2017; Carlini & Wagner, 2017a

● Origin of adversarial examples
○ Gilmer et al. 2018 -- due to flaws in model and learning objective
○ Schmidt et al, 2018 -- due to generalization error higher than zero
○ Fawzi et al., 2018 -- due to high-dimensional statistics



Target Task
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Networks can recover from adversarial input perturbations that 
force misclassifications x=x*+Δx by adding noise s.t. Pr{F(x+η)=y*} 
is “sufficiently” large and grouping together types of random 
adversarial transformations 

Goals:

1. Instead of trying to recover from adversarial 
perturbation, try to detect it statistically through 
probabilistic classification

2. Accomplish this with a probabilistic classifier using a 
parameterized logit layer of scores that leverages 
the fact that perturbations are not robust.



Adversarial Perturbation with Noise
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Proposed Solution

Parameterize logits: fy(x) = 〈wy, Φ(x)〉 
○ wy: weight vectors
○ Φ(x): feature map from a trained network

Add noise to get perturbed log-odds: fy,z(x + η) 
○ η ~ N
○ y = y* during training or y = F(x) during testing

Find suspected perturbation F(x*+Δx) = y ≠ y*:

Find expected perturbed log-odds:

Flag as possibly adversarial if: 

Define new classifier for test-time attacks:



Implementation
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1. Attack all examples provided to pre-trained deep neural networks 

a. Attack strategy: L∞-norm constrained Projected Gradient Descent 
white-box attack

2. Compare the norm of the induced feature space perturbation ||ΔΦ||2 along 
adversarial directions and random directions and alignment of feature 
space and select weight vectors to characterize shift in feature 
representation

3. Compare distance to decision boundary for perturbed vs. natural examples 
to characterize classification output differences



Data Summary

CIFAR10

- Images: 60,000 

- Classes: 10 (6000 images per 

class)

- 50,000 training and 10,000 test 

images.
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ImageNet

- Non-empty synsets: 21,841

- Images: 14,197,122

- Images with bounding box 

annotations: 1,034,908



Experimental Results

Adversarial examples not 
necessarily detectable due to 
distance to decision boundary

Adversarial examples present in 
“cones” in feature space, 
surrounded by natural class 

Softmax predictions of x*+Δx+η 
show that adding noise to 
adversarial example does not 
necessarily recover natural class
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Figure 1. Average distance to 
the decision boundary

Figure 2. Adversarial cone



Experimental 
Analysis
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Correction method able to cope 
with stronger attacks

Twice as effective as 
state-of-the-art adversarial 
training strategy

Comparable accuracy to feature 
squeezing detection

Significantly higher accuracy 
than dropout randomization 
detection



Results Reproduction
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ResNet models
- Clean
- Robustified

CIFAR10 Dataset
- 60,000 train; 10,000 test

n18 n24 n30

clean robust clean robust clean robust

Legitimate 
examples

without 
correction 0.9600 0.8800 0.8800 0.8800 0.9600 0.8800

with 
correction 0.9400

n/a
0.8300 n/a 0.9500 n/a

Adversarial 
examples

without 
correction 0.0300 0.5100 0.0300 0.5100 0.0300 0.5300

with 
correction 0.1800

n/a
0.1700 n/a  0.2400 n/a

Detection ratio of samples with 
valid clean classifications and 
invalid attacked classifications: 
0.76



Results Reproduction
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Alignments
- Computed by 〈ΔΦ, Δພ〉
- Larger in magnitude and 

greater in number for 
adversarial examples

Reinforces implication that 
adversarial examples cause 
atypically large feature space 
perturbations



Conclusion and Future Work
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Conclusions
- Adversarial perturbation 

changes the shape of the 
feature space that input 
vectors are projected onto.

- Adversarial perturbations of 
varying strength can be 
detected and corrected for 
through log-odds analysis 
with high accuracy.

Future Work
- Implement with L2 and 

re-compare results against  
feature squeezing

- Research network architecture 
to better understand 
underlying properties that 
enable the success of this 
method

- Determine if this method 
generalizes to all models
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