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Background

● Pre-training is widely used for deep convolutional neural 
networks
○ Application: “Pre-train then Tune” paradigm 
○ Research: create “universal representations”

● Doubts on Pre-training
○ He et al. [1] argued pre-training shows no performance 

benefits for traditional models or large tasks.
○ Lin et al. [2] found that pre-training doesn’t have 

advantages when giving sufficient time for training, even 
for the tuning for extremely small datasets.



Motivation
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● To demonstrate the effectiveness of pre-training on 
several aspects.

● To prove that pre-training enhances model uncertainty 
estimates in 
○ Out-of-Distribution detection 
○ calibration



Related Work
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● Pre-training
○ Improves generalization for tasks with small 

datasets, including transfer learning[3][4], and 
tasks with significant variation[5].

○ Used in large tasks such as Microsoft COCO[1]
■ but no accuracy gains in performance[2][15]

 



● Uncertainty
○ To detect out-of-distribution samples, use the maximum 

value of a classifier’s softmax distribution[18]
○ Mahalanobis distance-based scores that characterize 

out-of-distribution samples using hidden features[9]
○ Using GAN[21] to  generate out-of-distribution samples
○ Applying non-specific, real, and diverse outlier images or 

text instead improves out-of-distribution detection 
performance and calibration[22]

○ Contemporary networks can easily become miscalibrated 
without additional regularization[23]
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Related Work



Target Task
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Show the performance of pre-training in:

● Uncertainty
○ Out-of-Distribution Detection
○ Calibration



Data Summary
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● Downsampled(64 x 64) ImageNet[10] for pre-training

● CIFAR-10, CIFAR-100 and Tiny ImageNet datasets[24] 

without 200 overlapping Tiny ImageNet classes from 

Downsampled ImageNet



Implementation

○ Use 40-2 Wide ResNets trained using SGD with 
Nesterov momentum and a cosine learning rate. 

○ Pre-training: 100 epochs on Downsampled ImageNet, 
fine-tuned for 10 epochs for CIFAR and 20 for Tiny 
ImageNet without dropout (learning rate of 0.001). 

○ Baseline: 100 epochs with a dropout rate of 0.3. 

8



9

Basic model
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Train from scratch

Pre-train then tune



Out-of-Distribution Detection

● In distribution data: test dataset
● Out-of-distribution data: Gaussian noise, textures etc.
● Use the maximum softmax probabilities to score 

anomalies
● Evaluation metrics: AUROC (the Area Under the 

Receiver Operating Characteristic curve), AUPR (the 
Area Under the Precision-Recall Curve)

 



12Calculate AUROC and AUPR 



Results in Paper
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Out-of-distribution Detection



Reproduction Results
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CIFAR10 AUROC AUPR

Normal Pre-training Normal Pre-training

Gaussian 89.32 95.44 43.44 64.38

Rademacher 89.04 94.61 42.79 59.47

Blob 94.56 97.15 68.11 83.67

Textures 87.98 93.74 55.84 70.85

SVHN 91.77 95.65 63.47 76.77

CIFAR100 87.42 90.49 54.76 65.30

Mean 90.02 94.49 54.80 69.94

Out-of-distribution Detection for CIFAR10



Reproduction Results
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CIFAR100 AUROC AUPR

Normal Pre-training Normal Pre-training

Gaussian 49.67 96.61 14.78 79.95

Rademacher 46.75 97.66 14.13 87.54

Blob 85.89 89.34 45.02 55.96

Textures 73.29 79.65 33.03 44.03

SVHN 74.51 79.21 32.27 48.42

CIFAR10 75.66 75.21 34.71 35.52

Mean 67.63 86.28 28.99 58.57

Out-of-distribution Detection for CIFAR100
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Reproduction Results

Tiny ImageNet AUROC AUPR

Normal Pre-training Normal Pre-training

Gaussian 64.82 78.01 18.68 26.65

Rademacher 67.48 73.42 19.86 23.17

Blob 64.84 60.47 18.95 17.14

Textures 68.99 72.25 29.02 29.99

SVHN 86.66 89.24 51.39 57.69

Mean 70.58 74.68 27.58 30.93

Out-of-distribution Detection for Tiny ImageNet



Reproduction Results
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Reproduction Results



Calibration
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● According to methods of Chawla et al[22], adopt RMS and 
MAD to measure the calibration of a classifier 

RMS:

MAD:

Soft F1 score:  

● Compare results of using pre-training and not using 
pre-training.



Results in paper
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In-distribution Calibration



21Out-of-distribution data



22Out-of-distribution data



23Calculate RMS, MAD, Sf1



24Calculate RMS, MAD, Sf1
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Reproduction Results

CIFAR10 RMS Error MAD Error Soft F1 Score

Normal Pre-training Normal Pre-training Normal Pre-training

In-Distribution 6.39 2.88 2.87 1.24 27.83 29.65

Gaussian 33.02 28.17 18.09 14.06 15.44 34.63

Rademacher 33.29 29.63 18.20 14.73 14.61 30.12

Blob 26.76 22.54 14.94 11.73 36.69 48.46

Textures 24.83 23.18 16.02 13.46 29.88 38.08

SVHN 25.26 23.30 15.37 12.74 34.01 42.58

CIFAR100 24.80 22.14 16.26 13.82 28.31 35.69

Mean 24.91 21.69 14.54 11.69 26.68 37.03

Calibration for CIFAR10 
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Reproduction Results

CIFAR100 RMS Error MAD Error Soft F1 Score

Normal Pre-training Normal Pre-training Normal Pre-training

In-Distribution 13.32 3.63 10.26 2.51 42.44 46.33

Gaussian 28.25 8.48 24.30 5.70 30.90 64.29

Rademacher 28.11 7.49 24.52 5.10 30.16 65.71

Blob 22.62 10.13 17.95 7.31 50.35 59.27

Textures 23.40 10.81 20.11 8.76 44.24 54.32

SVHN 24.06 10.23 24.06 8.60 44.04 54.67

CIFAR10 23.64 11.48 19.91 9.60 44.85 52.12

Mean 23.34 8.89 19.61 6.80 41.00 56.67

Calibration for CIFAR100 



Reproduction Results
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Reproduction Results
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Reproduction Results
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Conclusion and Future Work

Conclusion

● The benefits of pre-training extend beyond merely quick 
convergence, as previously thought, since pre-training can improve 
model uncertainty.
○ Pre-trained representations directly translate to improvements in 

predictive uncertainty estimates. 
○ Training from scratch can only reach the same performance as training 

with pre-training on unperturbed data. 
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Conclusion and Future Work

Future Work
● Figure out the reasons for unexpected lowerer performance of 

pre-trained models
- OOD detection(Tiny-ImageNet) on Blob

● Reproduce the part of evaluation on robustness of models. 
● Validate the effects of pre-training on other datasets. 
● Compare the effects of different strategy for pre-training
● Some work could specialize pre-training for these downstream 

tasks. 
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Job Split
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Xingchen Liu: 
Train baseline network from scratch, OOD detection 

Clare Wang: 
Pre-train network and tune, Calibration
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