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Motivation

e Recurrent neural networks are proven highly effective for
language-modeling tasks, but explicitly impose a chain-structure on data
that is at odds with the non-sequential structure of language.

o Language has a latent tree-like structure (Chomsky 1956, Dehaene et
al. 2015)

e Constituency trees - constituent is a group of words that function as a

single unit within a hierarchy.

Interest expense 1n the 1988 third quarter was 75.3 million

Figure: Demonstrating the non-sequential structure of language
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Background

e Ongoing area of research for several decades - to model a parse tree,
represent a context-free grammar, given a corpus or any natural language
dataset

e Success with this task can be used for various goals: NER, Co-reference
resolution, parsing responding to questions, forming semantic
representations of the language

e Also an area of interest of the authors: grammar induction
(unsupervised modeling of the parse tree and grammar). Ordered
Neurons may apply in the future?



Related Work

Socher et al. (2010); Alvarez-Melis & Jaakkola (2016); Zhou et al. (2017);
Zhang et al. (2015) use supervised learning on expert-labeled treebanks
for predicting parse trees.

Socher et al. (2013) and Tai et al. (2015) explicitly model the
tree-structure using parsing information from an external parser.

Bowman et al. (2016) exploited guidance from a supervised parser (Klein
& Manning, 2003) in order to train a stack-augmented neural network.



Claim / Target Task

The authors claim that their variant of the LSTM architecture,
“ON-LSTM?”, can achieve SotA performance in building syntactic parse
trees/modeling CFGs, which can, in turn, lead to success with the
previously mentioned downstream tasks, like semantic parsing or
named-entity-recognition.

They claim to be able to do so by performing only fairly minor changes to
the original LSTM architecture, and demonstrate their results on a
commonly used dataset (Penn Treebank)
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Figure A.1: Left parses are from the 2nd layer of the ON-LSTM model, Right parses are converted 7
from human expert annotations (removing all punctuations).



Proposed

Upshot: High-ranking neurons will store long-term information which is kept
for a large number of steps, while low-ranking neurons will store short-term
information that can be rapidly forgotten
e Development of new activation function “cumulative softmax” which is
capable of inducing the desired tree structure
e Use of this “cumax” activation to produce a new forget & input gate, which
in turn are used to produce cell state (different architecture from typical
LSTM)
e Result: Cumax weighting causes indices with “lower indices” to be

forgotten and/or replaced by fresh input - a tree structure forms over time



ON-LSTM (ordered-neuron LSTM): uses similar architecture to the
standard LSTM
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e Tree Structure: e Ordered Neurons:
When a larger constituent ends, all ————  When a high-ranking neuron is
nested smaller constituents also end. erased, all lower ranking neurons

should also be erased.
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We introduce a new activation function:

g — cumax(. : ) = cumsum(SOftmaX(- ‘ ))’

Where cumsum represents the cumulative sum.
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Implemen

<— Higher rank

cumax(-) enforces ordered

forget/write operation

<— Lower rank

softmax(-) cumax(-)
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Implementa

We introduce this activation function to
enforce an order to the update frequency

on master forget gate and master input
gates:

ft = cumax(met + U fht_l + bf)
ip=1-— cumax(Wsx, + Uzhy—1 + b;)
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Data Sumn

« Authors tested primarily using the WSJ10 dataset

« Dataset is from the 1990’s, originally speech-to-text

e Included in Penn Treebank dataset (PTB) available in NLTK

« Input: raw text (unlabeled, some transformations like UNKSs)

« Output: manipulated parse tree constructed by experts in PTB
dataset, built from original WSJ10 set, some minor transformations
performed by author

« Original tree is compared to cell-state output to determine

accuracy, rather than the hidden state of LSTM

16



e Language modeling
e Unsupervised Constituency Parsing
e Syntactic Evaluation
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e Dataset: PTB (Mikolov, 2012)
e Task: Predicting the next word

Model Test

Shen et al. (2017) - PRPN-LM 62.0

Merity et al. (2017) - AWD-LSTM - 3-layer LSTM (tied) 373
ON-LSTM - 3-layer (tied, S runs) 56.17 £ 0.12

Yang et al. (2017) - AWD-LSTM-MoS 544
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Dataset:

Penn TreeBank
Training Task:
Language modeling
Evaluation Task:
Constituency parsing
Evaluation Metric:
Unlabeled F1

Method WSJ Test
Random binary tree 18.4+0.1
Right branching 39.5+0
PRPN (Shen et. al., 2017) | 37.4+0.3
ON-LSTM (2nd layer) 47.7+1.5
ST-Gumbel 19.0+ 1.0
RL-SPINN 13.2+0.1
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Xperim

ON-LSTM LSTM

Long-Term Dependency

SUBJECT-VERB AGREEMENT:

Long VP coordination 0.74 0.74
Across a prepositional phrase 0.67 0.68
Across a subject relative clause 0.66 0.60
Across an object relative clause 0.57 0.52
Across an object relative (no that) 0.54 0.51
REFLEXIVE ANAPHORA':

Across a relative clause 0.57 0.58
NEGATIVE POLARITY ITEMS:

Across a relative clause (grammatical vs. intrusive) 0.59 0.95
Across a relative clause (intrusive vs. ungrammatical) 0.20 0.00
Across a relative clause (grammatical vs. ungrammatical) 0.11 0.04
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Not SotA for language modeling, but is close

Achieves SotA performance on unsupervised constituency parsing
Is weaker than standard LSTM in syntactic evaluation in short term

dependencies, but stronger in long-term
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Conclusion

Proposed ordered neurons, a novel inductive bias for RNNs. Based on this idea, we
propose a novel recurrent unit, the ON-LSTM, which includes a new gating
mechanism and a new activation function cumax(-)

The model performance on unsupervised constituency parsing shows that the
ON-LSTM induces the latent structure of natural language in a way that is coherent

with human expert annotation.

The inductive bias also enables ON-LSTM to achieve good performance on
language modeling, long-term dependency, and logical inference tasks.
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Code contributions

Our code is primarily in the following files:

ordered_neuron_model.py - We wrote the model from scratch here. Also
contains an undocumented loss function class that we converted to
Tensorflow from the author’s codebase but did not work.

main.py - Contains our main training, saving, configuration, and testing
procedures

test phrase grammar.py - Author’s testing code which re-used. Heavy
modifications to get it to work in our codebase and to strip out all pytorch
components.

config.yaml - Config file

We are not using the exact same code/different loss function as the paper.
Therefore, we don’t expect the exact same results. Our primary hope was

to achieve somewhat reasonable results on the constituency parsing task
that could demonstrate the author’s purpose.
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Running Code

To run, please use "main.py”

You can toggled between train or test mode
with the boolean variable at the top. Test
mode will try to load the model. Model is too
large to include in code submit. Please

inquire separately if you need our finished
model.
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Language Output
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Tree Intersections

: , Reca: 1. S J
Model output: ['a’, [['voice', [['says’, [
Prec: 0.250000, Reca: 0.400000, F1: ©.3076
Model output: ['new’, "jersey']
Prec: 1.000000, Reca: 1.000000, F1: 1.000000
Model output: ['remember®', ['pinocchio’, ['says’, ['a’, ['female’', ‘voice']]]]]
Prec: 0.250000, Reca: 0.500000, F1: ©.333333
Model output: [‘consider’, ['jim", ‘courter']]
Prec: 1.000000, Reca: 0.500000, F1l: ©.666667
Model output: [‘and’, [[["the', ['nose’, ‘on']], 'mr."'], [‘courter®', ["'s", ['face’', ‘grows®']]1]1]]
Prec: ©0.000000, Reca: ©0.000000, F1: ©.000000
Model output: [‘'who', ["'s", ['really’, [[['lying', ["asks®', "a']], 'female'], 'voice']]]]
Prec: ©0.000000, Reca: 0.000000, F1l: ©.000000
Model output: [‘who', ["'s", ["telling’, ['the", "truth']]]]
Prec: 1.000000, Reca: 1.000000, F1l: 1.000000
Model output: [‘but’, ["it", ["'s", ['building’, [['on', "a'], ['long', "tradition’]]]]11]
Prec: 0.500000, Reca: 0.750000, F1: ©.600000
Model output: ['seats’, [‘currently’, [[[['are’', [['quoted’, "at"'], 'N,N"]], "bid"], 'and’'], ['N,N", 'asked']]]]
Prec: 0.250000, Reca: ©0.333333, F1: ©.285714
Model output: ["but’, ["it", ['resists’, ['yielding', ['political’, ‘ground®]]]1]
Prec: ©0.750000, Reca: 1.000000, F1: ©.857143
Model output: [‘cathryn’, [‘rice’, ['could’, [['hardly®', ['believe’, ‘her']], ‘eyes’']]]1]
Prec: ©0.200000, Reca: 0.250000, F1: ©.222222
Model output: ['she’, ["had', ['seen’, [[['cheating’, ‘before’'], ‘but'], ["these’, ['notes’, ['were’', ‘uncanny®]]11111]
Prec: 0.250000, Reca: 0.333333, F1: ©.285714
Model output: [["the', ‘student'], ['surrendered’, ["the', ['notes’, [‘'but’, [[['not', ‘without'], 'a'], ‘protest']]]111]
Prec: 0.250000, Reca: 0.285714, F1: 0.266667
Model output: ['in’, [[[[[ 'september’, ['she’, ‘pleaded']], ‘guilty'], ‘and'], ‘paid’'], ['a‘', ['N"', 'fine']]]]
Prec: ©0.125000, Reca: 0.200000, F1: ©.153846
Model output: ["her', ['"alternative', ['was"', [[['N"', 'days’'], "in'], "jail']]]]
Prec: 0.600000, Reca: 0.600000, F1l: 0.600000
Model output: [‘her', ['story’, [[[['is®', ['partly’, ‘one']], ‘of'], ‘personal’], ‘downfall®]]]
Prec: 0.166667, Reca: 0.200000, F1: ©.181818
Model output: ['and’, [[[[['sales’, ‘'of'], "test-coaching’'], ‘'booklets'], ‘for'], ['classroom’, [‘'instruction’, ['are', ‘booming']]]]]
Prec: ©0.1250600, Reca: 0.142857, F1: ©.133333
Model output: ['and’, [[[['south’, ['carolina’, ‘'says']], "it'], "is'], ['getting’', ‘'results']]]
Prec: 0.166667, Reca: 0.200000, F1: ©.181818
Model output: ["her', ['immediate®’, [ 'predecessor’, ['suffered’, ['a’, ['nervous’, ‘'breakdown®]]]1]11]
Prec: 0.400000, Reca: 0.666667, F1l: ©.500000
Model output: ['i", ['loved', ['the’, ['school’, ['its', ‘history']]]1]1]
Prec: 0.750000, Reca: 0.750000, F1: ©.750000
Model output: [‘'pressures’, [‘began’, ['to’, 'build’']]]
Prec: 1.000000, Reca: 1.000000, F1: 1.000000
Model output: ['friends', ["told’, ["her', [[['she', 'was'], ‘pushing'], ["too', ‘hard’']]]]1]
Prec: 0.500000, Reca: 0.600000, F1l: ©.545455

c'mon”, ‘now']], ‘do']], ["n't", ['you', ["have', 'boyfriends’]]]]]
2



Tree Intersections

- Visibly increased precision and recall
results from sample outputs from 12/6
presentation after training for another day

- Where precision is the fraction of
“correctly matched unsupervised tree
‘branches™ in the model’s output against
the total model’s output

- And recall is the fraction of “correct
matched unsupervised tree ‘branches’™ by
the total number of possible correct

matches =



William:
. Built data preprocessing tools

. Some testing code
. Slides

Andrew:

. Built model construction & training code
. Some testing code
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