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Motivation
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• Imaging modalities are limited by resolution at some point by hardware

– Diffraction limit in microscopy

– Pixel count in digital cameras

• In cases where greater resolution is required than hardware allows, it is 

desirable to increase resolution after image acquisition

– Can an image be reliably up-sampled using machine learning without 

introducing noise/false information?

– How can model parameters and design choices impact performance 

through tuning?



Related Work
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• Super-resolution network architecture utilizes:

– Upsampling layers (FSRCNN showed parametric 

deconvolution to improve implicit S2 runtime)[7]

– Deep, recursive neural networks (Generally 10 

layers with 3x3 kernels, risk of overfitting)[7]

– Skip connections (Shown to preserve low-level 

features in images)[5]

• Choice of convolutional method

– Flattened, Group, and Depthwise Seperable 

convolution are popular choices[8,9,10]



Background

• CNN’s are state of the art and are proven to upsample[1]

• Applications include security, medical, and satellite 

imaging[2]

• Early Single Image Super Resolution (SISR) use 

shallow CNNs (3-5 layers)[3]

– Deep CNNs with low-level feature preserving skip-

layers have been shown to be superior

– These include SRDenseNet, RDN, and MemNet[4,5,6]

• In SISR, topics of interest include activation width, 

normalization methods, and convolutional kernels



Claim 
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Main Claims: 

● Non-linear Relu activations stop info propagation from shallow layers to 

deeper layers

● Expanding features before nonlinear activations improves SISR 

performance over architecture overhauls due to an increased likelihood of 

low level (super resolution) features flowing through network toward final 

layer

○ Wide activation - efficient ways to expand features before nonlinear 

activations

○ Using CNNs for mapping low resolution images to their high res. 

counterparts



Target Task
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● To improve upon SoTA SISR performance by introducing this concept of 

wideness/wider activations to be computed by expanding features before 

activation. 

● Achieving higher resolution mappings without increasing model complexity 

(Deep NN parameters) - Real time processing - Need to keep 

computational overhead/parameters down. 



An Intuitive Figure Showing WHY Claim
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Left Top: Overview of results by SotA SISR models in 2018 [12] 

Left Bottom: Yu et al. proposal to simplify existing SISR network 

architectures [13] - This is the network we will be reproducing.

Right Top: Early work on SISR [11]



More Figures + Proposed Solution
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Novelty: Wider 

feature space before 

activation layer. Low 

level information isn’t 

lost as network is 

propagated through.

Novelty: Wider 

feature space before 

activation layer than 

WDSR-A + low-rank 

convolution stack.



Proposed Solution #1

Wide Activation: WDSR-A

a. Slim identity mapping pathway with wider channels before 

activation in each residual block.

i. Wide activation - efficient ways to expand features before 

nonlinear activations. Need quick upsampling techniques for 

real time processing.

ii. Why? Existing architectures were over-parameterized. 

iii. What methods were carried over? Skip Connections are 

essential. Batchnorm is neglected as accuracy was too 

sensitive. 



Proposed Solution #2

Efficient Wider Activation: WDSR-B

a. Expands on WDSR-A.

b. Tried: additional feature expansion via group convolution and 

depthwise separable convolution.

i. Group convolution: Convolving over a portion of the input 

channels and concatenating.

ii. Depthwise separable convolution: Each channel is kept 

separate when convolving + a 1x1 spatial filter.

c. Produced low-rank convolution coupled with even wider activation

i. Results suggested this decayed feature activations, backing 

hypothesis.

d. Wider activation > baselines, given different parameter budgets

e. Loosely inspired by Inverted Residuals (A parameter efficient 

convolution method)



Data Summary

• Model trained on DIV2K (DIVerse 2K Resolution images) dataset

• Default split of DIV2K dataset

– 800 training images

– 100 validation images

– 100 testing images (not publicly available)

• Authors used 800 images for training, 10 images for validation during 

training

• Trained models evaluated on 100 validation images

DIV2K: https://data.vision.ee.ethz.ch/cvl/DIV2K/
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https://data.vision.ee.ethz.ch/cvl/DIV2K/


Implementation

• Cropped 96x96 RGB input patches and bicubic downsampled image (both from 

HR image) used as training output-input pair

• Training data augmented with random horizontal flips and rotations

• Mean RGB values of training images subtracted from the input images

• PSNR (Peak Signal-to-Noise Ratio) is used as metric for validation

• ADAM optimizer used

• Batch size set to 16, learning rate initialized with maximum convergent value, 

halved every 2x105 iterations

REF: https://github.com/JiahuiYu/wdsr_ntire2018
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https://github.com/JiahuiYu/wdsr_ntire2018


Experimental Results
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Efficiency and Accuracy comparison in terms of NO. of parameters and 

validation PSNR respectively, among baseline model EDSR and proposed models 

(with same NO. of residual blocks)

*Higher PSNR value is better



Experimental Results (Continued)
Effect of weight normalization compared to batch and no normalization (during 

training)



Experimental Analysis

● Weight normalization has 

faster convergence

● Batch normalization is 

unstable during testing

○ Possibly due to 

different mean, 

variance in test and 

batch-train data
15



Experimental Analysis ( Cont’d)

● Batch normalization is 

unstable during testing

○ Not because of 

Learning Rate

○ Tried a variety of LR

○ Unstable PSNR for 

every LR 
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Conclusion

● Proposed 2 SR networks:

○ WDSR-A: Image features expanded before ReLU

○ WDSR-B: Image channels expanded using 1x1 convolution

● Experimented on DIV2K dataset

○ Weight Normalization works better than Batch-Norm or no norm

● Achieved better accuracy, keeping the same:

○ Parameters

■ Model complexity
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Paper Reconstruction

CODE ADAPTED FROM: https://github.com/krasserm/super-resolution
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https://github.com/krasserm/super-resolution
https://github.com/krasserm/super-resolution


Data - DIV2K Dataset

● Bicubic-Downsample each image 

in data set

○ Produces the highest quality 

downsample through 

weighted averaging of 

neighboring pixels

● Compare the super-resolved 

down-sampled image to the 

original image using peak signal-

to-noise ratio (PSNR) as loss 

function

● 800 train, 100 test, 100 validation



• Calculate loss through mapping downsampled low resolution to high 

resolution image (x4 upscaled)

• Training images randomly flipped, roated, and cropped

• Loss Function: PSNR

– Related to MSE

• Train EDSR, WSDR-A, WSDR-B models

• Adam Optimizer with learning rate schedule (PiecewiseConstantDecay)

Training Pipeline



EDSR - The Previous State-of-the-Art



WSDR



WSDR-A Proposed Solution 1



WSDR-B Proposed Solution 2



Model Architecture Samples

EDSR WDSRa WDSRb

Architecture 

the same as 

WDSRa. 

Wider channel

activation

before skip

connection.

Redundant 

Convolution

al stack.



Example Visual Results



Comparison of Models

PSNR on 10 Validation Images During Training



Comparison of Models

Residual Blocks 1 3

Networks EDSR WDSR-A WDSR-B EDSR WDSR-A WDSR-B

Parameters 409731.0 92304.0 36809.0 557443.0 240080.0 73595.0

DIV2k PSNR 

(validation)
27.5 27.8 27.7 27.8 28.1 28.0

Residual Blocks 5 8

Networks EDSR WDSR-A WDSR-B EDSR WDSR-A WDSR-B

Parameters 705155.0 387856.0 110381.0 926723.0 609520.0 165560.0

DIV2k PSNR 

(validation)
27.9 28.2 28.1 27.9 28.2 28.2



Comparison of Models

Residual Blocks 1 3

Networks EDSR WDSR-A WDSR-B EDSR WDSR-A WDSR-B

% Parameter 

Increase

- 22.53% 8.98% - 43.07% 13.20%

% Val PSNR 

Improvement

- 1.05% 0.82% - 1.03% 0.72%

Residual Blocks 5 8

Networks EDSR WDSR-A WDSR-B EDSR WDSR-A WDSR-B

% Parameter 

Increase

- 55.00% 15.65% - 65.77% 17.87%

% Val PSNR 

Improvement

- 1.18% 0.86% - 0.87% 0.98%



Key Takeaways

• Models likely trained far shorter (no reference in paper).

• WDSRa or WDSRb always outperform EDSR

• WDSRa and B always run at a fraction of the total number of params.

• WDSRb with 8 resblocks runs @ the highest Validation PSNR with 18% of 

the number of trainable parameters of EDSR.



• More Results

• PSNR mostly increases as a function of model depth (# of residual blocks)

• WDSRb parameter growth is much flatter than EDSR and WDSRa, even moreso

than described in paper.



• Normalization Effects

• No drastic difference between utilization of weight normalization layers against no 

normalization.

• Tests ran with Batchnorm proved to be unstable (PSNR ~16 throughout training)
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Assignments
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https://docs.google.com/spreadsheets/d/1C0JuoJgLHKp-m18c3Te0fyVIXqRbnKhy0Aq3JYwUds8/edit#gid=1386834576
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