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Motivation
● Large margin principle: the optimal separating 

hyperplane is at the maximum distance possible 
from the closest points in 2 different classes

● Models built on large margin (eg. SVM): 
○ Successful in avoiding overfitting and 

improving generalization
○ More robust to partial outliers and 

perturbations 
● Classical Large margin: implemented well in 

shallow networks but not in deep networks
● Goal of the paper: Implement large margin 

principle in input space of deep networks
How large margin 

principle solves where 
to place the ideal 

hyperplane



Background
● Decision Boundary: Separation point between two different classes. At 

the decision boundary, there is ambiguity in class decisions.
● Margin: The smallest non negative distance between decision boundary 

and closest class point
● Support Vector machines: The most well known maximum margin 

principle based classification models - use support vectors (points closest to 
decision boundary) to estimate margin

● Margins in Deep Networks: Easy to compute in output space, very 
difficult (sometimes impossible) to compute in input space. WHY? -
Input-Output correspondence not directly calculable because input passes 
through many layers and activations.



Related Work

● SVMs: Vapnick et al. (1995) propose SVM models improving 
generalizability and robustness

● Maximum margin networks: Liu et al(2016), Sun et al.(2015) 
Sokolic et al (2016), Liang et al (2017), Sun et al (2015) 
demonstrate maximum margin principle on output space by 
extending classic loss functions like cross entropy.

● Sokolic et al (2016) demonstrate Jacobian based Regularized 
Deep Networks possess large margin-like properties 

● Hein et al (2017) and Matyasko et al (2017) try to improve 
adversarial robustness by proposing loss functions  



Claim / Target Task

● “Proposal of a novel network-agnostic loss function which captures the 
principle of large margin separation in both the input and hidden 
layers for deep neural networks.”

● The proposed loss function improves over standard neural networks in 
3 distinct ways:
○ Noisy labels: A few labels in training data have their labels 

switched randomly
○ Generalization: Training on very small set of training samples
○ Adversarial Perturbations: Robust to both black box and 

white box attacks
● In general, if the model is robust to all the above attributes, it gives a 

good shaped decision boundary.



An Intuitive Figure Showing WHY Claim

Why a maximum margin principle is required in neural networks 
- Which decision boundary is correct? A,B or C? (Ideally B)
Using maximum margin principle, we can correctly penalize 
boundary which are too close to either of the classes and force the 
model to learn the correct boundary.

If large margin is only enforced at 
output stage, we loose upon 
information in the input space, giving 
ambiguity on the decision boundary. 
The yellow square here points out the 
location of the poor shape of decision 
boundary. The main motivation of the 
paper is to achieve a better shape of 
decision boundary.



Proposed Solution

● Defining a boundary between two classes i and j, where the 
probability of sample being classified as i or j is the same. Hence,

D{i,j} = {x | f_i(x) = f_j(x) }
● Now margin is defined as the smallest distance to be moved so that it 

reaches the decision boundary, implying a score tie. Hence,
disp* = min ||d|| where f_i(x+d) = f_j(x+d)

● Now we have to penalize this margin for points farther away from it. 
Max{0, margin + d*sign(f_i(x) - f_cc(x))} where cc is the 

correct class label of point x
● Expanding this to multiple class setting, we have to aggregate this over 

several classes. We can take either sum or max.



Proposed Solution - contd
Once we aggregate the losses over all classes we get the final loss function as:

As mentioned before, d is not directly calculable in deep networks. The paper 
then proposes linearization to represent d as a function of outputs for 
every layer. Hence, the final loss function can be represented as:



Implementation

• A major approximation to reduce the computation time is to treat 
the denominator of the loss function as a constant wrt. W during 
backpropagation. This is argued based on obtaining an almost 
similar expansion using Taylor series.

• The optimizer used was Adam/SGD.
• For Imagenet dataset only the maximum class value obtained in 

forward pass was used i.e. only 1 class. For MNIST and CIFAR10 all 
the classes were used.  



Data Summary
1. MNIST :
- Database of handwritten digits
- Has a training set of 60,000 samples and a test set of 10,000 samples.
- The digits have been size-normalized and centered in a fixed size image.
1. CIFAR-10
- Consists of 60,000 32*32 color images in 10 classes, with 6000 images per 

class.
- There are 50,000 training images and 10,000 testing images. 
1. ImageNet
- Image database organized according to WorldNet hierarchy where each 

node of the hierarchy is depicted by hundreds and thousands of images.
- This database has over 14 million labeled images depicting 20,000+ object 

categories. 



Experimental Results
Experimental results for MNIST - (Figures from top right, clockwise) - Noisy labels, 
generalization, black box IFGSM and White Box IFGSM, and performance on adversarially 
trained models



Experimental Results
Experimental results for CIFAR-10- (Figures from top right, clockwise) - Noisy labels, 
generalization, black box IFGSM and White Box IFGSM



Experimental results

Experimental results for ImageNet- - ImageNet WhiteBox 
FGSM/IFGSM and blackbox FGSM/IFGSM defense performance



“Insane Experiments Require Insane 
Training.” 



Exp1: Model performance vs Noisy Labels



Exp 2: Large Margin Accuracy vs dataset size



Exp 3&4: FGSM Black-box and White-box 
attacks 



Exp 5&6: IFGSM Black-box and White-box 
attacks 



Experimental Analysis
MNIST: 
• 4 hidden layer network with 2 convolutional layers and 2 fully 

connected layers.
• Margin models considered for l∞, l1 and l2 norms.
• Analysis for Noisy Labels: Randomly switch labels of dataset items -

percentage of flipped labels varies from 0 to 80% in steps of 20. l2
model achieves highest accuracy, followed by cross-entropy

• Generalization : Trained data with 0.125% of the original data - 68 
samples. All layer margin model outperforms cross entropy 

• Adversarial Perturbation : Fast gradient Sign Method and iterative 
version of perturbation used. All margin models outperform cross 
entropy.



Experimental Analysis
CIFAR - 10
• Resnet model: consisting of an input convolutional layer and 3 

blocks where each block contains 2 convolutional layers repeated 3 
times.

• Noisy Labels: l1 model outperform cross entropy. (across all the 0-
80% range of flipped labels)

• Generalization: l1 and l∞ margin models perform better than  cross 
entropy - this performance difference becomes is bigger when the 
training dataset size is in the region of 1 to 5%

• Adversarial Perturbation: Performance of cross entropy and 
margin models compared IFGSM attacks. l1 and l∞ models superior 
to cross entropy.  ***** (Test Only)



Conclusion and Future Work
1. The paper presents a new loss function inspired by the theory of large 

margin that is amenable to deep network training. 
2. This new loss is flexible and can establish a large margin that can be 

defined on input, hidden or output layers, and using l∞, l1, and l2 distance 
definitions.

3. The method described in the paper is computationally practical: for 
Imagenet, training was about 1.6 times more expensive than cross-entropy.
Future Work:

1. The training on only one class in ImageNet, does not actually prove it 
would work well if all classes are taken into account.

2. More experiments should be done in the space of adversarial perturbations 
like CW. They can be added to solidify the claim of the paper.
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