UVA CS 6316: Machine Learning : 2019 Fall
Course Project: Deep2Reproduce @
https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

Parameter-Efficient Transfer Learning for NLP

Neil Houlsby ! Andrei Giurgiu'* Stanistaw Jastrzebski?® Bruna Morrone'! Quentin de Laroussilhe !
Andrea Gesmundo! Mona Attariyan! Sylvain Gelly !

Parameter-Efficient Transfer
Learning for NLP

N. Houlsby et al., "Parameter-Efficient
Transfer Learning for NLP," arXiv
preprint arXiv:1902.00751, 2019.

Reproduced By:
Kallie Whritenour & Stephanie Schoch

https://github.com/qiyanjun/deep2reproduce/tree/master/2019Fall

e “Transfer learning and domain adaptation refer to the situation

where what has been learned in one setting ... is exploited to
improve generalization in another setting.” [2]

e Common transfer learning techniques in NLP:

o Feature-based transfer:
m Real-valued embedding vectors (at word, sentence, or paragraph level) are pre-
trained and fed to custom downstream models.
o Fine-tuning:
m Pre-trained network weights are copied and tuned on a downstream task
e Original parameters are adjusted for each new task
m Better performance and more parameter efficient than feature-based transfer
(Howard & Ruder, 2018)
e Fine-tuning with lower layers of a network shared between tasks: increases

parameter efficiency

« BERT: Vaswani et al. (2017)
— Transformer network
— Trained on large text corpora
with unsupervised loss
— SOTA: text classification &

extractive question answering

Qutput

Probabilities
Feed
Forward
Mult-Head
Feed Attention
Forward) Nx
—
Add & Norm
N | —(Add&Norm) Masked
Multi-Head Multi-Head
Attention Attention
At At
L J U | e—,
Positional) Q Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

¢ Limitations of Related Work:

o Other approaches, like Multi-Task Learning (Caruana, 1997) requires access to all
tasks during training.
o Fine-tuning large pre-trained models for transfer learning in NLP is effective but
parameter inefficient.
m New sets of weights are required for each task (limited parameter
efficiency/compactness)
m Feature-based transfer is even more inefficient.
e Goal:
o Build a system that performs well on all tasks in an online setting, without
training all model parameters for each new task.
m Online setting: tasks arrive in a stream
e Potential Applications/Impact:

o Cloud services: many tasks arrive from customers in a sequence

| Claims

« Argue: Fine-tuning large pre-trained models (i.e., BERT) for many

downstream tasks is parameter inefficient

— Parameter efficient solution would involve sharing between tasks

« Proposed: Transfer with adapter modules
— Adapter Modules: New modules added between layers of a pre-trained network
« New function is defined with parameters copied from pre-training, small
number of parameters are added to the model per task
— More parameter efficient with minimal performance tradeoff
« Original network parameters are fixed (parameter sharing), few trainable
parameters added per task

— Yields compact and extensible downstream models (useful for online tasks):
« Compact: solve many tasks using small number of additional trainable parameters per
task

« Extensible: can be trained to solve new tasks without forgetting previous ones

Transfer Learn

Number of
Parameters

Task
Generalization

Adapter Tuning
for NLP

- Few parameters

added for new

task

- Minimal

performance drop 6

1. Attains good performance

2. Permits training on tasks sequentially
(does not require simultaneous access to all
datasets)

3. Adds only a small number of additional

parameters per task

Adapter-based Tuning for Transformers

- Instantiate adapter-based
tuning for text
Transformers (SOTA for
many NLP tasks)

e Consider standard

>

proposed in Vaswani et

Transformer

architecture,

al. (2017).

-
Add & Norm

~
Feed
Forward

Output
Probabilities

(N\
Add & Norm

Feed

Forward

Add & Norm

Multi-Head
Attention
T Nx
Nix Add & Norm
¢—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t —t
— J U —)
Positional o) ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Adapter Architecture Applied to Transformer

Inserted serial adapter
after each of the two
sub-layers in
Transformer layer
(attention layer,
feedforward layer).
Adapter is always
applied directly to
output of sub-layer

(after projection back to

input size, but before
adding skip connection
back. Adapter output is

then passed directly into

the following layer
normalization.

hd [Layer Norm] A

®

2x Feed-forward
layer
A

Transformer

Layer

1

Layer Norm

Feed-forward Iayer
1
Multi-headed
attention

o e e e e e m e En En e S En e Em e e e =

- e -

o

- ——————

Each sublayer is followed immediately by a
projection mapping features size back to size of
layer’s input. Skip connection is applied across
each sub-layer. Output of each sub-layer fed
into layer normalization.

e o — — — — — — — — — — — — — — — ——————

———— - —— —— - ——

’ Adapter
Layer
O000O0O0
4 I N\
Feedforward

up-project
|

Nonlinearity

[
OIO

Feedforward
down-project

|

.
\ OOO‘OOO F

[——

e = -

Project back to d-
dimensions

Apply
nonlinearity.

Adapters project
original d-
dimensional
features into
smaller
dimension m.

Bottleneck architecture to limit

number of parameters

« Important: New layers are injected into original network, but original network weights are untouched/shared by many tasks!

Data Sum

- Task Categories: Classification, Extractive Question Answering

e C(lassification:

— Transfer BERT Transformer model, with adapters, to 26 text classification
tasks (including GLUE benchmark)
« GLUE (General Language Understanding Evaluation) benchmark:

— Benchmark of nine sentence- or sentence-pair language unders G LU E
built on established existing datasets

« 17 public classification tasks

— Analyze parameter/performance trade-off

« Extractive Question Answering;:

— Tested on: SQUAD Extractive Question Answering vi.1

— Used to show that adapters work on tasks other than classification

10

GLUE behc

Transfer from pre-trained BERT-LARGE model:

— 24 layers, total of 330M parameters
— Perform small hyperparameter sweep (learning rates & number of epochs) for

adapter tuning

— Trained on 4 Google Cloud TPUs with a batch size of 32
Test using fixed adapter size (# of units in bottleneck), and

selecting best size per task from {8, 64, 256}

Compare to fine-tuning public, pre-trained BERT transformer
network

— Current standard for transfer of large pre-trained models, and strategy
successfully used with BERT
— For N tasks, full fine-tuning requires N x # parameters of pre-trained model

. . 11
— Goal: attain equal performance with fewer total parameters

Experimental

o Performance on GLUE (mean GLUE score across 9 tasks):

— 80%: adapters
— 80.4%: full-fine tuning of standard BERT
— Near state-of-the-art performance
« Adapters add only 3% of # parameters trained by fine-tuning:

— Fine-tuning requires 9 x total # BERT parameters

— Adapters require only 1.3 x parameters

e Other observation:

— Optimal adapter size varies per dataset

« Always restricting to size 64 results in small decrease in mean GLUE score: 79.6%

Takeaway: On GLUE, adapter-tuning achieved scores within 0.4% of

full fine-tuning of BERT, but used only 3% of # parameters trained by

: : 12
fine-tuning!

Proj ect Go

« Goal:
— Reproduce the results from the GLUE tasks presented in the paper.
e Project components:
— Transfer from pre-trained BERT-LARGE model (24 layers, 330M
parameters)
e Fine-tune BERT on each task (100% of parameters trained)

« Train BERT w/ Adapters on each task

13

Our Selecte Gl

« Selected a subset of GLUE tasks:
— Similarity and Paraphrase Task:
« Microsoft Research Paraphrase Corpus (MRPC)
— Automatically extracted sentence pairs from online news
sources
— Human annotations: are sentences semantically equivalent
— Single-Sentence Classification Task:
« The Corpus of Linguistic Acceptability (CoLA)
— Sentences w/ acceptability judgements from 22 books and
journal articles on linguistic theory
— Each example: single string of English words, annotated yyith

whether 1t 1€ 2 esrammaticallv nossible csentence

[]

Code Walkt

import datetime
import json
import os
import pprint
import random
import string
import sys

!pip install tensorflow==1.13.1

» Control TF Version and ignore

import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)

print(tf.__version_)

deprecation warnings

assert 'COLAB_TPU_ADDR' in os.environ, 'ERROR: Not connected to a TPU runtime’
TPU_ADDRESS = 'grpc://' + os.environ['COLAB_TPU_ADDR"]
print('TPU address is', TPU_ADDRESS)

., Check for TPU availability and
set address

from google.colab import auth
auth.authenticate user()

with tf.Session(TPU_ADDRESS) as session:
print('TPU devices:')

». Print list of TPUs available to

pprint.pprint(session.list_devices())

Upload credentials to TPU.
with open('/content/adc.json’, 'r') as f:

auth_info = json.load(f)
tf.contrib.cloud.configure_gcs(session, credentials=auth_info)
Now credentials are set for all future sessions on this TPU.

double check resources

15

TPU address is grpc://18.112.68.82:8470@

TPU devices:

[_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:CPU:8, CPU, -1, 14337102601143229768),
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:XLA_CPU:8, XLA_CPU, 17179869184, 9486B85686737355285),
_DeviceAttributes(/job:tpu_worker/replica:@8/task:@/device:TPU:@, TPU, 17179869184, 1500544995307758074),

_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU:
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device: TPU:
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU:
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU:
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU:
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU:6, TPU, 17179869184, 14311138783531243347),
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU:7, TPU, 17179869184, 2733988545855826383),
_DeviceAttributes(/job:tpu_worker/replica:8/task:8/device:TPU_SYSTEM:@, TPU_SYSTEM, 8589934502, 9838345759840592752)]

, TPU, 17179869184, 72235819081580485739),
TPU, 17179869184, 3779531385744863593),
TPU, 17179869184, 560811283335708207742),
TPU, 17179869184, 133164577282335383),

TPU, 17179869184, 172219609116569932115),

-

-

-

\IO\U“?WNH

We can see that we successfully found 7 TPUs and their address, which we will need to reference later in
the code because it changes from session to session

16

Code Walkt

© 71ask = ‘coLats'MRRC’

assert TASK in ('MRPC', 'ColLA'), "Only (MRPC, CoLA) are demonstrated here.’

Define Google Cloud Bucket with Data and Pretrained Models
BUCKET = "cs6316_finaal project’

assert BUCKET, 'Must specify an existing GCS bucket name

Google TPUs need to access

Data Dir: Needs to be in Google Cloud

TASK_DATA_DIR = 'gs://{}/data/glue_data/{}'.format(BUCKET,TASK) - (Ci_]ata ?n%rregegneq models from
oogle Cloud Services

print('***** Task data directory: {} *****' _format(TASK_DATA DIR))
lgsutil 1s $TASK_DATA_DIR

Cloud
OUTPUT DIR = "gs://{}/'.format(BUCKET)+model +'/models/{}".format(TASK)
tf.gfile.MakeDirs(OUTPUT_DIR) » Set and check that we've
print(***** Model output directory: {} *****' format(OUTPUT_DIR)) successfully found our GCS
Bucket

BERT_MODEL = 'uncased_L-12_H-768_A-12'
print('***** TPy ADDRESS: {} *****'_ format(TPU_ADDRESS))

wxwxx Task data directory: gs://cs6316_finaal project/data/glue_data/ColLA *=***
gs://cs6316_finaal_project/data/glue_data/ColA/dev.tsv
gs://cs6316_finaal_project/data/glue_data/ColA/test.tsv
gs://cs6316_finaal_project/data/glue_data/ColA/train.tsv
gs://cs6316_finaal_project/data/glue_data/ColLA/original/
*rwxx Model output directory: gs://cs6316_finaal_project/adapter-bert/models/ColA ***=*
*#*x* TPU ADDRESS: grpc://18.112.68.82:8479 *****

Here we see our Bucket is correct!

17

[]

[]

Code Walkthrough: Evaluation Code

I'python /content/drive/My\ Drive/Colab\ Notebooks/Final/$model/run_classifier.py \

--task_name=3TASK \

--do_train=true \

--do_eval=true \

--use_tpu=true \

--tpu_name=$TPU_ADDRESS \

--data_dir=$TASK_DATA DIR \
--vocab_file=$BERT_PRETRAINED DIR/vocab.txt \
--bert_config_file=$BERT_PRETRAINED_DIR/bert_config.json \
--init_checkpoint=$BERT_PRETRAINED_DIR/bert_model.ckpt \
--max_seq_length=128 \

--train_batch_size=32 \

--learning_rate=2e-5 \

--num_train_epochs=15.8 \

--output_dir=$0UTPUT_DIR/

--do_predict=true \

!python /content/drive/My\ Drive/Colab\ Notebooks/Final/$model/run_classifier.py \
--task_name=$TASK \
--do_eval=trues \
--use_tpu=trus \
--tpu_name=$TPU_ADDRESS \
--data_dir=$TASK_DATA DIR \
--vocab_file=$BERT_PRETRAINED_DIR/vocab.txt \
--bert_config_file=3BERT_PRETRAINED_DIR/bert_config.json \
--max_seq_length=128 \
--init_checkpoint=$0UTPUT_DIR/ 'model.ckpt-4888" \
--output_dir=$0UTPUT_DIR/new/ /

Call to run classifier code -Train
Mode
e can set hyper-params here
e training takes multiple
hours
e Pass data, model, output
and TPU paths here

Call to run classifier code - Eval
Mode
e Loads fully tuned models
trained previously
e Eval takes ~3 min
e Doesn’t change model
weights, only applies model

to data
18

Code Walkthrough: Evaluation Code

modeling.py

e defines BERT model with
adapters

.. e parameter setting passed here
run classifier.py

e Controls Training and
Evaluation Loop
e (Calls other functions
© organizes running e Defines Adam Weight Decay
the different Optimizer
components of the
model provided by

optimization.py

A

the scripts

e Outputs TF flags

tokenization.py

e tokenizes input data based on
model used
o Cased vs. Uncased

INFO:tensorflow: ***** Total Parameters = 111863842 ***=x*
INFO:tensorflow: ***** Total Trainable Parameters = 23702p4 **%*x

Total Parameters (Size of Bert and # of params trained during full fine-tuning) VS Trainable Params
(adapter-only parameters are the only trained weights during transfer of Adapter-Bert Model)
e Adapters require only around 3% of trainable parameters compared to fine-tuning (this ratio
depends on size of the adapter layers which can be specified as a hyper param.)

INFO:tensorflow:tokens: [CLS] he said the foods ##er ##vic ##e pie business doesn ' t fit the company ' s long - term growth strategy . [SEP] " the food:
INFO:tensorflow:input_ids: 101 2882 2056 1996 9448 2121 7983 2063 11345 2440 2087 185 1856 4906 1996 2194 1005 1855 2146 1811 2744 3930 5656 1012 182 1
INFO:tensorflow:input_ mask: 1100000000000000000080
INFO:tensorflow:segment_ids: 6 e 6060000 QC0POCREREEEAREREREROEOLS11111111111111111112086000000000000000080
INFO:tensorflow:label: 1 (id = 1)

INFO:tensorflow: *** Example ***

INFO:tensorflow:guid: dev-2

INFO:tensorflow:tokens: [CLS] magna ##relli said ra ##cic ##ot hated the iragi regime and looked forward to using his long years of training in the war
INFO:tensorflow:input_ids: 1@1 20281 22948 2856 10958 19953 4148 6283 1996 8956 693% 1998 2246 2330 2000 2478 2018 2146 2086 1997 2731 1999 1996 2162 18
INFO:tensorflow:input_mask: 110860800860000e0008e
INFO:tensorflow:segment_ids: 6 e 600000000 0PO0OBOROORRERERRGEREEeEAL1111111111111111111111111100606000000280
INFO:tensorflow:label: @ (id = @)

INFO:tensorflow:*** Example ***

INFO:tensorflow:guid: dev-3

INFO:tensorflow:tokens: [CLS] the dollar was at 116 . 92 yen against the yen , flat on the session , and at 1 . 289 ##1 against the swiss fran ##c , als
INFO:tensorflow:input_ids: 181 1996 7922 2001 2812 120984 1812 6227 18371 2114 1996 18371 1818 4257 2806 1996 5219 10816 1998 2812 1815 1812 27854 2487 21
INFO:tensorflow:input_ mask: 11:
INFO:tensorflow:segment_ids: 6 e 6060000000000 OERBEPEEEROORCOOEGREROEAOREAA1I111111111111111111111111111
INFO:tensorflow:1label: 8 (id = @)

Clipped example of data representation within the model
20

Code Walkthrough: MRPC Data Examples, Evaluation Output

Hyper Parameter Setting for Training MRPC Model:

e batch size: 32 e Bert Model Parameters: as default
e learning rate: 2e-5 o hidden_size=768,
e number of epochs: 15 o num_hidden_layers=12,
e max. sequence length: 128 o num_attention_heads=12,
e adapter size: 64 o intermediate size=3072,
o hidden_act="gelu",
o hidden_dropout_prob=0.1,
o attention_probs_dropout_prob=0.1
IHFD:tensovFIDw:""' Eval results **%*=
INFO:tensortlow: val accuracy = @.85784316

INFO:tensorflow: e:al _loss = 1.0469517

Performance on MRPC evaluation set

21

Results

Parameter-Efficient Transfer Learning for NLP

We achieved comnarahle reciilte on a citheet of GTITE tacks:

Total num —Trained ‘l CoLA |ssT IMRPC |STSB QQP MNLIL, MNLL, ONLI RTE | Total
params params / task
BERT] ArGE 9.0x 100% 60.5 §94.9 89.3 876 T72.1 86.7 85.9 91.1 70.1) 80.4
Adapters (8-256) | 1.3x 3.6% 59.5 [94.0 89.5 86.9 T71.8 84.9 85.1 90.7 T1.5) 80.0
Adapters (64) 1.2x 2.1% 56.9 |94.2 89.6 873 T1.8 85.3 84.6 914 68.8) 79.6
Evaluation Accuracy by Model and Dataset
CoLA (BERTBASE)
MRPC COLA TOtal 86 Ll PR | ST | ol
3 844 i
BERT 0.8504902 0.8274209 0.83895555 < P
© 82 L
BERT w/ 0.85784316 | 0.8178332 0.83783818 3
Adapters e 804 I
% 781 d -
2 ® Layer Norm.
. o S 764| F Adapters L
e Col A discrepancy: Paper reported Matthew’s coefficient

in the table, we reported accuracy, with results similar to

Figure on the right:

F Fine-tune top layers

74

M 10*

10° 106 10’

Num trainable parameters / task

108

Visualizati

92

GLUE Results Comparison

76 |I I I |I II II

BERT-MRPC BERT-CoLA BERT-Total Adapter-MRPC Adapter-CoLA Adapter-Total

s B = & 5 5

3

mGoogle's ®Ours

Figure 1: Results for Google's BERT-ColA and Total are not reported due to difference in reported metrics. Google’s
Adapter-CQLA. is taken from line graph in paper, and total is recalculated.

23

Nnce

« Major conclusion/contribution from paper:
— Addition of adapter modules adds a small percentage of new
parameters for each new task, while still achieving state-of-the-
art performance

e Our results support this!

24

Discussion

« Major Challenge of Project:
— Complexity of transformer architecture

— How to train the models:
« Need to be run on a GPU with at least 12GB of RAM, or a Cloud
TPU
— Cannot train on local machines
« Tensorflow versioning issues with UVA CS Server
e Setting up virtual environment & project directory on server.
— Data-size exceeds allocated Google Colab space.

« Needed to set up Cloud TPU Storage Bucket & configure model to
work with Google Colab & TPU

— Time to train the models! 25

Setting-up Training Environments
— SLURM: Kallie
— Google Colab w/ Cloud Storage Bucket: Kallie

— Project directory/Virtual environment w/ server GPUs: Stephanie
Training Final Models: Kallie
Running Final Experiments: Kallie
Prepping Jupyter Notebook: Kallie
Slides:
— Paper review slides:
« Related Work, Graphic Visualization, Conclusions & Future Work: Kallie
« Motivation, Background, Claim/Target Task, Proposed Solution & Key Properties,
Adapter & Architecture Explanation Slides, Data Summary, Experiments: Stephanie
— Additional final project slides:
« Results w/ Visualization, Discussion, Project Components: Stephanie

« Code Walkthrough: Kallie, Stephanie
26

References

[1] R. Caruana, Multitask learning. Machine Learning, 1997.

[2] I. Goodfellow, Y. Bengio, & A. Courville, “Deep Learning,” 2016.

[3] N. Houlsby et al., “Parameter-Efficient Transfer Learning for NLP,” arXiv
preprint arXiv:1902.00751, 2019.

[4] J. Howard & S. Ruder, “Universal language model fine-tuning for text
classification,” ACL 2018.

[5] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C Clark, K Lee, L.
Zettlemoyer, “Deep conceptualized word representations,” NAACL, 2018.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, I. and Polosukhin, “Attention is all you need,” NIPS, 2017.

27

EXTRA SLIDES

The following slides are not part of the presentation, but can be

referred to during QA.

28

« Two main features of adapter modules:

— Small number of parameters

Adapter modules = small compared to the layers of the original network,

so total model size grows slowly when more tasks are added

— Near identity initialization

Required for stable training of the adapted model
Original network is unaffected when training starts since adapters are
initialized to a near-identity function
During training, adapter modules can be:

— Ignored if not required

— Activated to change distribution of activations throughout network
If initialization deviates too far from identity function, model may fail to

train 29

Implications

Total # parameters added per layer (including
biases): 2md + d + m

m < d: limit number of parameters added per

task

Bottleneck dimension m: provides means to

trade-off performance w/ parameter efficiency
— Few parameters relative to attention &

feedforward layers of original model

Transformer
Layer

2x Feed-forward
layer

Multi-headed
attention

Adapter module itself has a skip-connection internally

.~ Adapter
Layer

[OOO0O00Q]

Feedforward
up-project

1

Nonlinearity

Feedforward
down-project

— If parameters of projection layers are initialized to near-zero, the module is initialized to an

approximate identity function.

Additional step: trained new layer normalization parameters per task, alongside layers in the

adapter module

— Yields parameter efficient adaptation of network (2d parameters per layer)

Important: New layers are injected into original network, but original network weights are 30

untouched and shared by many tasks!

R

Classificatio

« Base Model: public, pre-trained BERT transformer network

« C(Classification approach & training procedure from Devlin et al.

(2018):

— Classification approach:

« First token in each sequence is special “classification token”

« Attach linear layer to embedding of this token to predict class label.
— Training procedure:

« Optimize using Adam (learning rate is increased linearly over the first 10% of the

steps, then decayed linearly to zero)

— All runs trained on 4 Google Cloud TPUs with a batch size of 32
— Run a hyperparameter sweep and select the best model according to accuracy on the

validation set, for each dataset and algorithm

31

Additional

« Used for validation of adapter efficacy in yielding compact, high-

performing models

« Diverse range of tasks & datasets (vary across # training examples,

classes, avg. text length, etc.)

e« Procedure:

Batch size 32, swept learning rates, selected # training epochs from {20, 50,
100} via manual inspection of validation set learning curves.

Test adapter sizes {2, 4, 8, 16, 32, 64}

Run additional baseline: variable fine-tuning

Collected benchmark performances (since no comprehensive set of SOTA for

set of tasks)

« Result: Similar to GLUE, performance of adapter-tuning is clos3e2
to full fine-tuning (0.4% difference)

Parameter

« Smaller adapter size = fewer parameters = higher parameter
efficiency... but what is the impact on performance?

- Adapter size: parameter efficiency/performance trade-off

— Compared two baselines:
« Fine-tuning of top k layers of BERT(Base)
e Tuning only layer normalization parameters

— Results:

« Performance decreases dramatically on GLUE when fewer layers are fine-tuned, but
adapters had good performance across a range of sizes two orders of magnitude
fewer than fine-tuning.

« Performance decreased dramatically when tuning only layer normalization

parameters

33

© SQUAD Ex

« Used as confirmation that adapters work on tasks beyond

classification
« Run on SQuAD vi.1:
— Task:

« Given question & Wikipedia paragraph, select the answer span to the

question from the paragraph.

— Results:
« Performance is comparable to full fine-tuning (while training many fewer
parameters):
— Adapter size 64 (2% of parameters): best F1 of 90.4%
— Full fine-tuning: 90.7%

— Adapter size 2 (0.1% parameters): best F1 of 89.9%
34

« Analyses performed:

— Ablation: to determine which adapters are influential
— Robustness investigation: based on

« Initialization scale

« Number of neurons

— Documentation of unsuccessful architecture extensions

35

Experimenta

e Procedure:

— Remove some trained adapters & re-evaluate the model (without re-training) on the validation set

— Experiment performed on BERT-BASE with adapter size 64 on MNLI and CoLLA datasets
« Observation 1: Each adapter has a small influence on the overall network, but the

overall effect is large.
— Removing any single layer’s adapters has only a small impact on performance.
« Largest performance drop from removing adapters from single layer was 2%
— When all adapters are removed from network, performance drops substantially (37% MNLI, 69%
CoL.A) - scores attained by predicting the majority class
« Observation 2: Adapters perform well because they prioritize higher
layers/automatically focus on higher levels of the network
— Adapters on the lower layers have a smaller impact than the higher layers
« Removing adapters from layers 0-4 on MNLI barely affected performance

— Intuition:

« Lower layers extract lower-level features shared among tasks

36

« Higher layers build features unique to different tasks

‘Robustness I

o Initialization scales:

Main experiments:
« Weights in the adapter module drawn from a zero-mean Gaussian with standard
deviation 10”-2, truncated to two standard deviation
Investigation for analysis of impact of initialization scale on performance:

« Test standard deviation in interval [107"-7, 1]

e (Observations:

On both datasets, performance of adapters is robust for standard deviations
below 10"-2.
If initialization is too large, performance degrades (more substantially on

CoLA).

37

obustnes

e Procedure:

— Re-examine experimental data from GLUE benchmark:
« Observe:
— Stable quality of model across adapter sizes
— Only small decrease of performance when using fixed adapter size
across all tasks
— Calculate mean validation accuracy across 8 classification tasks by selecting
optimal learning rate/# epochs for each adapter size:
« Mean validation accuracies for adapter sizes 8, 64, 256:

— 86.2%, 85.8%, 85.7% = stability!

38

Extensions to adapter architecture that didn’t yield significant

performance boost:
— Add a batch/layer normalization to the adapter
— Increase number of layers per adapter
— Try different activation functions (such as tanh)
— Insert adapters only inside attention layer
— Add adapters in parallel to main layers (possibly with a multiplicative

interaction)

All cases: performance similar to bottleneck, which is more

simple and yields strong performance.

39

« Components we did not reproduce w/ justification:

— Did not perform hyperparameter sweeps:
« These metrics not reported in paper, only best configuration was reported.

— Additional classification tasks:
« To benchmark these, a Neural AutoML algorithm was run for one week on CPUs
using 30 machines.
« Given training time for the model, GLUE tasks seemed more standardized (as
demonstrated by lack of baseline for additional tasks) and important to generate

results.
— SQuAD Extractive Question Answering, Ablation and Robustness

Investigation

« Time-prohibitive for training the models.
40

Conclusion and Future Work

The addition of adapter modules was found to add only a few
parameters for each new task while still achieving state-of-the-art
performance
— adapters were found to automatically place more weight on
higher levels, which coincides with learning features that are
task specific
— model performance was stable across adapter module size
— adapters were robust to single adapter layer removal but model
performance dropped significantly when all adapters were
removed
This work can be extended to applications beyond NLP including;:
Computer Vision, Machine Translation, and other areas
More work can be undertaken to understand how adapter modules
behave under different architectures, tasks, and hyperparameter
settings

41

