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Background on Transfer Learning

● “Transfer learning and domain adaptation refer to the situation 

where what has been learned in one setting … is exploited to 

improve generalization in another setting.” [2]

● Common transfer learning techniques in NLP:
○ Feature-based transfer:

■ Real-valued embedding vectors (at word, sentence, or paragraph level) are pre-

trained and fed to custom downstream models.

○ Fine-tuning:
■ Pre-trained network weights are copied and tuned on a downstream task

● Original parameters are adjusted for each new task

■ Better performance and more parameter efficient than feature-based transfer 

(Howard & Ruder, 2018)

● Fine-tuning with lower layers of a network shared between tasks: increases 

parameter efficiency



BERT: Transformer Architecture
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• BERT: Vaswani et al. (2017)
– Transformer network

– Trained on large text corpora 

with unsupervised loss

– SOTA: text classification & 

extractive question answering



Motivation for Paper
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● Limitations of Related Work: 
○ Other approaches, like Multi-Task Learning (Caruana, 1997) requires access to all 

tasks during training.

○ Fine-tuning large pre-trained models for transfer learning in NLP is effective but 

parameter inefficient.
■ New sets of weights are required for each task (limited parameter 

efficiency/compactness)

■ Feature-based transfer is even more inefficient.

● Goal: 
○ Build a system that performs well on all tasks in an online setting, without

training all model parameters for each new task.
■ Online setting: tasks arrive in a stream

● Potential Applications/Impact:
○ Cloud services: many tasks arrive from customers in a sequence



Claims

• Argue: Fine-tuning large pre-trained models (i.e., BERT) for many 

downstream tasks is parameter inefficient
– Parameter efficient solution would involve sharing between tasks

• Proposed: Transfer with adapter modules
– Adapter Modules: New modules added between layers of a pre-trained network

• New function is defined with parameters copied from pre-training, small 

number of parameters are added to the model per task

– More parameter efficient with minimal performance tradeoff

• Original network parameters are fixed (parameter sharing), few trainable 

parameters added per task

– Yields compact and extensible downstream models (useful for online tasks):
• Compact: solve many tasks using small number of additional trainable parameters per 

task

• Extensible: can be trained to solve new tasks without forgetting previous ones



Transfer Learning Tradeoff
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Adapter Tuning 
for NLP

- Few parameters 
added for new 
task
- Minimal 
performance drop

Task
Generalization

Number of 
Parameters



Key Properties of Proposed Strategy
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1. Attains good performance

2. Permits training on tasks sequentially

(does not require simultaneous access to all 

datasets)

3. Adds only a small number of additional 

parameters per task



Adapter-based Tuning for Transformers

• Instantiate adapter-based 

tuning for text 

Transformers (SOTA for 

many NLP tasks)

• Consider standard 

Transformer 

architecture, 

proposed in Vaswani et 

al. (2017).
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Adapter Architecture Applied to Transformer
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Inserted serial adapter 
after each of the two 
sub-layers in 
Transformer layer 
(attention layer, 
feedforward layer). 
Adapter is always 
applied directly to 
output of sub-layer 
(after projection back to 
input size, but before 
adding skip connection 
back. Adapter output is 
then passed directly into 
the following layer 
normalization. Each sublayer is followed immediately by a 

projection mapping features size back to size of 
layer’s input. Skip connection is applied across 
each sub-layer. Output of each sub-layer fed 
into layer normalization.

Adapters project 
original d-
dimensional 
features into 
smaller 
dimension m.

Bottleneck architecture to limit 
number of parameters

Project back to d-
dimensions

Apply 
nonlinearity.

• Important: New layers are injected into original network, but original network weights are untouched/shared by many tasks!



Data Summary

• Task Categories: Classification, Extractive Question Answering

• Classification:
– Transfer BERT Transformer model, with adapters, to 26 text classification 

tasks (including GLUE benchmark)
• GLUE (General Language Understanding Evaluation) benchmark:

– Benchmark of nine sentence- or sentence-pair language understanding tasks 

built on established existing datasets

• 17 public classification tasks

– Analyze parameter/performance trade-off

• Extractive Question Answering:
– Tested on: SQuAD Extractive Question Answering v1.1

– Used to show that adapters work on tasks other than classification
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GLUE benchmark: Procedure

• Transfer from pre-trained BERT-LARGE model:
– 24 layers, total of 330M  parameters

– Perform small hyperparameter sweep (learning rates & number of epochs) for 

adapter tuning

– Trained on 4 Google Cloud TPUs with a batch size of 32

• Test using fixed adapter size (# of units in bottleneck), and 

selecting best size per task from {8, 64, 256}

• Compare to fine-tuning public, pre-trained BERT transformer 

network
– Current standard for transfer of large pre-trained models, and strategy 

successfully used with BERT

– For N tasks, full fine-tuning requires N x # parameters of pre-trained model

– Goal: attain equal performance with fewer total parameters
11



Experimental Results: GLUE Text Classification

• Performance on GLUE (mean GLUE score across 9 tasks): 
– 80%: adapters

– 80.4%: full-fine tuning of standard BERT

– Near state-of-the-art performance
• Adapters add only 3% of # parameters trained by fine-tuning:

– Fine-tuning requires 9 x total # BERT parameters

– Adapters require only 1.3 x parameters

• Other observation:
– Optimal adapter size varies per dataset

• Always restricting to size 64 results in small decrease in mean GLUE score: 79.6%
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Takeaway: On GLUE, adapter-tuning achieved scores within 0.4% of 

full fine-tuning of BERT, but used only 3% of # parameters trained by 

fine-tuning!



Project Goals and Included Components

• Goal:

– Reproduce the results from the GLUE tasks presented in the paper.

• Project components:

– Transfer from pre-trained BERT-LARGE model (24 layers, 330M 

parameters)

• Fine-tune BERT on each task (100% of parameters trained)

• Train BERT w/ Adapters on each task
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Our Selected GLUE Tasks:

• Selected a subset of GLUE tasks:

– Similarity and Paraphrase Task:

• Microsoft Research Paraphrase Corpus (MRPC)

– Automatically extracted sentence pairs from online news 

sources

– Human annotations: are sentences semantically equivalent

– Single-Sentence Classification Task:

• The Corpus of Linguistic Acceptability (CoLA)

– Sentences w/ acceptability judgements from 22 books and 

journal articles on linguistic theory

– Each example: single string of English words, annotated with 

whether it is a grammatically possible sentence
14



Code Walkthrough: Evaluation Setup
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Control TF Version and ignore 
deprecation warnings 

Check for TPU availability and 
set address

Print list of TPUs available to 
double check resources



Code Walkthrough: Evaluation Setup
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We can see that we successfully found 7 TPUs and their address, which we will need to reference later in 
the code because it changes from session to session



Code Walkthrough: Evaluation Setup
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Google TPUs need to access 
data and pretrained models from 
Google Cloud Services

Set and check that we’ve 
successfully found our GCS 
Bucket

Here we see our Bucket is correct!



Code Walkthrough: Evaluation Code
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Call to run classifier code -Train 
Mode

● can set hyper-params here
● training takes multiple 

hours
● Pass data, model, output 

and TPU paths here

Call to run classifier code - Eval 
Mode

● Loads fully tuned models 
trained previously

● Eval takes ~3 min
● Doesn’t change model 

weights, only applies model 
to data



Code Walkthrough: Evaluation Code
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run_classifier.py

● Controls Training and 
Evaluation Loop

● Calls other functions
○ organizes running 

the different 
components of the 
model provided by 
the scripts

● Outputs TF flags tokenization.py

● tokenizes input data based on 
model used

○ Cased vs.  Uncased

optimization.py

● Defines Adam Weight Decay 
Optimizer

modeling.py

● defines BERT model with 
adapters

● parameter setting passed here



Code Walkthrough: MRPC Data Examples, Evaluation Output
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Clipped example of data representation within the model

Total Parameters (Size of Bert and # of params trained during full fine-tuning) VS Trainable Params 
(adapter-only parameters are the only trained weights during transfer of Adapter-Bert Model)

● Adapters require only around 3% of trainable parameters compared to fine-tuning (this ratio 
depends on size of the adapter layers which can be specified as a hyper param.)



Code Walkthrough: MRPC Data Examples, Evaluation Output
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Hyper Parameter Setting for Training MRPC Model:

● batch size: 32
● learning rate: 2e-5
● number of epochs: 15
● max. sequence length: 128
● adapter size: 64

Performance on MRPC evaluation set

● Bert Model Parameters: as default
○ hidden_size=768,
○ num_hidden_layers=12,
○ num_attention_heads=12,
○ intermediate_size=3072,
○ hidden_act="gelu",
○ hidden_dropout_prob=0.1,
○ attention_probs_dropout_prob=0.1



Results

• We achieved comparable results on a subset of GLUE tasks:
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Evaluation Accuracy by Model and Dataset

MRPC CoLA Total

BERT 0.8504902 0.8274209 0.83895555

BERT w/ 
Adapters

0.85784316 0.8178332 0.83783818

● CoLA discrepancy: Paper reported Matthew’s coefficient 
in the table, we reported accuracy, with results similar to 
Figure on the right:



Visualization of Results
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Conclusions

• Major conclusion/contribution from paper: 

– Addition of adapter modules adds a small percentage of new 

parameters for each new task, while still achieving state-of-the-

art performance

• Our results support this!
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Discussion

• Major Challenge of Project:

– Complexity of transformer architecture

– How to train the models:
• Need to be run on a GPU with at least 12GB of RAM, or a Cloud 

TPU

– Cannot train on local machines

• Tensorflow versioning issues with UVA CS Server

• Setting up virtual environment & project directory on server.

– Data-size exceeds allocated Google Colab space.
• Needed to set up Cloud TPU Storage Bucket & configure model to 

work with Google Colab & TPU

– Time to train the models! 25



Division of Work

• Setting-up Training Environments

– SLURM: Kallie

– Google Colab w/ Cloud Storage Bucket: Kallie

– Project directory/Virtual environment w/ server GPUs: Stephanie

• Training Final Models: Kallie

• Running Final Experiments: Kallie

• Prepping Jupyter Notebook: Kallie

• Slides:

– Paper review slides:

• Related Work, Graphic Visualization, Conclusions & Future Work: Kallie

• Motivation, Background, Claim/Target Task, Proposed Solution & Key Properties, 

Adapter & Architecture Explanation Slides, Data Summary, Experiments: Stephanie

– Additional final project slides:

• Results w/ Visualization, Discussion, Project Components: Stephanie

• Code Walkthrough: Kallie, Stephanie
26
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EXTRA SLIDES

The following slides are not part of the presentation, but can be 

referred to during QA. 
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Features of Adapter Modules

• Two main features of adapter modules:

– Small number of parameters
• Adapter modules = small compared to the layers of the original network, 

so total model size grows slowly when more tasks are added

– Near identity initialization
• Required for stable training of the adapted model

• Original network is unaffected when training starts since adapters are 

initialized to a near-identity function

• During training, adapter modules can be:

– Ignored if not required

– Activated to change distribution of activations throughout network

• If initialization deviates too far from identity function, model may fail to 

train 29



Implications of Bottleneck Architecture

• Total # parameters added per layer (including 

biases): 2md + d + m

• m < d: limit number of parameters added per 

task 

• Bottleneck dimension m: provides means to 

trade-off performance w/ parameter efficiency
– Few parameters relative to attention & 

feedforward layers of original model
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• Adapter module itself has a skip-connection internally
– If parameters of projection layers are initialized to near-zero, the module is initialized to an 

approximate identity function.

• Additional step: trained new layer normalization parameters per task, alongside layers in the 

adapter module
– Yields parameter efficient adaptation of network (2d parameters per layer)

• Important: New layers are injected into original network, but original network weights are 

untouched and shared by many tasks!



Classification: Experiment Set-Up

• Base Model: public, pre-trained BERT transformer network

• Classification approach & training procedure from Devlin et al. 

(2018):
– Classification approach:

• First token in each sequence is special “classification token”

• Attach linear layer to embedding of this token to predict class label.

– Training procedure:
• Optimize using Adam (learning rate is increased linearly over the first 10% of the 

steps, then decayed linearly to zero)
– All runs trained on 4 Google Cloud TPUs with a batch size of 32

– Run a hyperparameter sweep and select the best model according to accuracy on the 

validation set, for each dataset and algorithm
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Additional Classification Tasks

• Used for validation of adapter efficacy in yielding compact, high-

performing models

• Diverse range of tasks & datasets (vary across # training examples, 

# classes, avg. text length, etc.)

• Procedure:
– Batch size 32, swept learning rates, selected # training epochs from {20, 50, 

100} via manual inspection of validation set learning curves.

– Test adapter sizes {2, 4, 8, 16, 32, 64}

– Run additional baseline: variable fine-tuning

– Collected benchmark performances (since no comprehensive set of SOTA for 

set of tasks)

• Result: Similar to GLUE, performance of adapter-tuning is close 

to full fine-tuning (0.4% difference)
32



Parameter/Performance Trade-Off

• Smaller adapter size = fewer parameters = higher parameter 

efficiency… but what is the impact on performance?

• Adapter size: parameter efficiency/performance trade-off
– Compared two baselines: 

• Fine-tuning of top k layers of BERT(Base)

• Tuning only layer normalization parameters

– Results:
• Performance decreases dramatically on GLUE when fewer layers are fine-tuned, but 

adapters had good performance across a range of sizes two orders of magnitude 

fewer than fine-tuning.

• Performance decreased dramatically when tuning only layer normalization 

parameters
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SQuAD Extractive Question Answering

• Used as confirmation that adapters work on tasks beyond 

classification

• Run on SQuAD v1.1:

– Task:
• Given question & Wikipedia paragraph, select the answer span to the 

question from the paragraph.

– Results:
• Performance is comparable to full fine-tuning (while training many fewer 

parameters):

– Adapter size 64 (2% of parameters): best F1 of 90.4%

– Full fine-tuning: 90.7%

– Adapter size 2 (0.1% parameters): best F1 of 89.9%
34



Experimental Analysis

• Analyses performed:

– Ablation: to determine which adapters are influential

– Robustness investigation: based on

• Initialization scale

• Number of neurons

– Documentation of unsuccessful architecture extensions

35



Experimental Analysis: Ablation

• Procedure:
– Remove some trained adapters & re-evaluate the model (without re-training) on the validation set

– Experiment performed on BERT-BASE with adapter size 64 on MNLI and CoLA datasets

• Observation 1: Each adapter has a small influence on the overall network, but the 

overall effect is large.
– Removing any single layer’s adapters has only a small impact on performance.

• Largest performance drop from removing adapters from single layer was 2%

– When all adapters are removed from network, performance drops substantially (37% MNLI, 69% 

CoLA) - scores attained by predicting the majority class

• Observation 2: Adapters perform well because they prioritize higher 

layers/automatically focus on higher levels of the network
– Adapters on the lower layers have a smaller impact than the higher layers

• Removing adapters from layers 0-4 on MNLI barely affected performance

– Intuition:
• Lower layers extract lower-level features shared among tasks

• Higher layers build features unique to different tasks
36



Robustness Investigation: Initialization Scale

• Initialization scales:
– Main experiments: 

• Weights in the adapter module drawn from a zero-mean Gaussian with standard 

deviation 10^-2, truncated to two standard deviation

– Investigation for analysis of impact of initialization scale on performance: 
• Test standard deviation in interval [10^-7, 1]

• Observations:
– On both datasets, performance of adapters is robust for standard deviations 

below 10^-2.

– If initialization is too large, performance degrades (more substantially on 

CoLA).
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Robustness Investigation: Number of Neurons

• Procedure:
– Re-examine experimental data from GLUE benchmark:

• Observe:

– Stable quality of model across adapter sizes

– Only small decrease of performance when using fixed adapter size 

across all tasks

– Calculate mean validation accuracy across 8 classification tasks by selecting 

optimal learning rate/# epochs for each adapter size:

• Mean validation accuracies for adapter sizes 8, 64, 256:

– 86.2%, 85.8%, 85.7% = stability!
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Experimental Analysis: Extensions

• Extensions to adapter architecture that didn’t yield significant 

performance boost:
– Add a batch/layer normalization to the adapter

– Increase number of layers per adapter

– Try different activation functions (such as tanh)

– Insert adapters only inside attention layer

– Add adapters in parallel to main layers (possibly with a multiplicative 

interaction)

• All cases: performance similar to bottleneck, which is more 

simple and yields strong performance.
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Project Components Not Included

• Components we did not reproduce w/ justification:

– Did not perform hyperparameter sweeps:
• These metrics not reported in paper, only best configuration was reported.

– Additional classification tasks:
• To benchmark these, a Neural AutoML algorithm was run for one week on CPUs 

using 30 machines.

• Given training time for the model, GLUE tasks seemed more standardized (as 

demonstrated by lack of baseline for additional tasks) and important to generate 

results.

– SQuAD Extractive Question Answering, Ablation and Robustness 

Investigation
• Time-prohibitive for training the models.
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Conclusion and Future Work
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• The addition of adapter modules was found to add only a few 
parameters  for each new task while still achieving state-of-the-art 
performance
– adapters were found to automatically place more weight on 

higher levels, which coincides with learning features that are 
task specific

– model performance was stable across adapter module size
– adapters were robust to single adapter layer removal but model 

performance dropped significantly when all adapters were 
removed

• This work can be extended to applications beyond NLP including: 
Computer Vision, Machine Translation, and other areas

• More work can be undertaken to understand how adapter modules 
behave under different architectures, tasks,  and hyperparameter 
settings


