TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing

A. Odena, |. Goodfellow

Google Brain

arXiv: 1807.10875
Reviewed by : Bill Zhang
University of Virginia
https://qdata.github.io/deep2Read/


https://qdata.github.io/deep2Read/

Outline

Introduction
Background

The TensorFuzz Library
Experimental Results
Conclusion

References



Introduction

Basic Premise and Motivation

» Tricky to make robust conclusions about techniques that are
hard to debug; the 'reproducibility crisis’ in machine learning

» Even straightforward questions about a network can be
computationally expensive to answer; current methods like
ReluPlex do not scale well

» Draw from a traditional software engineering technique,
Coverage-Guided Fuzzing (CGF), and create similar method
for neural networks



Background

Coverage-Guided Fuzzing

» Common technique used to find serious bugs in software;
common fuzzers include AFL and libFuzzer

» Fuzzing maintains an input corpus, randomly changes the
inputs using some mutation procedure, and keeps the changed
input if it adds additional coverage

» "Coverage” is usually set to be the lines of code which have
been executed given an input

» This would not really work for neural networks because even
different inputs usually take the same branches when being
executed; branches are independent of the specific values of
the network'’s input

> Instead, let coverage be determined by the network's
activations



Background

Testing of Neural Networks

» Pei et al.: Introduced metric of neuron coverage for network
with ReLU units

» Ma et al.: Took, for each neuron, the range of values seen
during training, divided it into k chunks, and measured
whether each of the chunks had been "touched”; also,
measured whether activation was ever above or below some
given bounds

> Sun et al.: Introduced metric inspired by Modified
Condition/Decision Coverage

» Tian et al.: Applies neuron coverage metric to DNNs in
self-driving car software; performed natural image
transformations and used principle of metamorphic testing

> Wicker et al.: Performed blackbox testing of image classifiers
using image-specific operations



Background

Opportunities for Improvement

» Success of CGF methods suggests that there should be an
analogous method for neural networks

» Other metrics like neuron coverage was shown to be too easy
to satisfy (25 randomly selected images from MNIST was
enough to activate all neurons)

» Some metrics also only apply to RelLUs, or are difficult to
generalize beyond RelLUs

» Want a metric that is simple, cheap to compute, and easily
applied to all architectures



The TensorFuzz Library

Basic Fuzzing Procedure

> Instead of interacting with computer program, interact with
TensorFlow graph which we can feed inputs and get outputs

from
» Unlike traditional CGF, restrict inputs to valid inputs
» Images are correct shape and size, values restricted to range of
values in actual dataset under consideration
» For text, restrict to characters present in dataset



The TensorFuzz Library

Basic Fuzzing Procedure

> Given the seed corpus, until instructed to stop, the fuzzer
chooses an input, mutates it, and feeds it to the neural
network

» Then, a set of coverage arrays and metadata arrays (from
which the objective function will be computed) are extracted
from the network

» If the mutated input adds coverage, add to corpus; add to test
cases if objective function is satisfied



The TensorFuzz Library

Detailed Fuzzing Procedure

» Input chooser
» Uniform random selection worked well
» Faster to use a heuristic p(ck, t) = ):ekt;tt where p(ck, t) is the
probability of choosing element ¢, at time t and t is when the
element was added to the corpus

» Mutator
» For images, either add white noise with user-specified variance
or add white noise but constrain the difference between input
and mutation to some /., norm; afterwards, clip image to
original input range
» For text, randomly delete a character, add a character, or
substitute a character



The TensorFuzz Library

Detailed Fuzzing Procedure

» Objective function

» Generally, we run the fuzzer with the goal of having the
network in some state - maybe a state regarded as erroneous

» Objective function is applied to metadata arrays and inputs
which cause errors are flagged

» Coverage analyzer

» Want to check if network is in a state that it has not been in
before

» Want the check to be fast (and simple)

» Want it to work for many types of computation graphs

» Want it to be hard to exercise full coverage to cover as many
behaviors as possible

» Want new coverage to provide incremental progress



The TensorFuzz Library

Detailed Fuzzing Procedure

» Coverage analyzer (cont.)

» Naive method would treat each activaton vector as new
coverage - all inputs trivially increase coverage

> Instead, look up nearest neighbor and add new activation
vector it is sufficient far away (greater than some L)

» Use open-source FLAN to compute nearest neighbors

» Found that performance is good even if only tracking logits or
layer before logits

» Potential optimization: do not actually need to know nearest
neighbor; just need existence within some L so could use
distance-sensitive bloom filter at the expense of missing some
"new” coverage vectors



The TensorFuzz Library

Detailed Fuzzing Procedure

The Fuzzer Process

Data: A seed-corpus of inputs to the

computation graph
I S o Result: Test cases satisfying the objective
while number of iterations < N do

T parent < SampleFromCorpus;

s data + Mutate (parent);

cov, meta + Fetch(data);

e if IsNewCoverage (cov) then
* | add data to corpus;
v end
e if Objective (meta) then
o = - - O | add data to list of test cases;
end
end

Figure 1: Coarse descriptions of the main fuzzing loop. Left: A diagram of the fuzzing procedure,
indicating the flow of data. Right: A description of the main loop of the fuzzing procedure in
algorithmic form.



The TensorFuzz Library

Batching and Nondeterminism

» TensorFlow graphs are made to take advantage of
hardware-parallelism, so process batch of inputs and analyze
coverage for batch of arrays each iteration

» Computation graphs often give nondeterministic results due to
intrinsic random functions and large accumulations on GPUs;
deal with this in naive way: if same input produces different
coverage, then simply have the input appear twice in the
corpus



Experimental Results

Numerical Errors in Trained Models

» Since neural networks use floating point operations, they are
susceptible to numerical issues during training and evaluation;
focus on finding inputs which result in NaN values

» These are usually difficult to find because they are triggered
by very specific inputs
» Numerical errors are important to find because they can be

very dangerous if first encountered in productions; CGF can
find a large number of these errors

» CGFs can quickly find these errors by adding check numeric
ops to metadata



Experimental Results

Numerical Errors in Trained Models

» Gradient descent based methods might be faster, but it is
unclear what kind of objective function you would use to find
NaN errors

» Random search is prohibitively inefficient for finding these
errors; unable to find a non-finite element

Figure 2: We trained an MNIST classifier with some unsafe numerical operations. We then ran the
fuzzer 10 times on random seeds from the MNIST dataset. The fuzzer found a non-finite element
every run. Random search never found a non-finite element. Left: the accumulated corpus size of the
fuzzer while running, for 10 runs. Right: an example satisfying image found by the fuzzer.



Experimental Results

Disagreements from Quantized Versions

» Quantization is where neural network weights are stored and
neural network computations are performed using numerical
representations which have fewer bits

» This technique reduces computational cost and size of
networks

» It's important to find errors in quantized models because
quantization is not useful if accuracy is lowered too much

» Just checking existing data does not work: MNIST trained on
32-bits and truncated to 16-bits had no disagreements on
existing data



Experimental Results

Disagreements from Quantized Versions

» CGF can quickly find errors in small regions around data
» Running fuzzer with mutations restricted to 0.4 /|, orb around
seed images resulted in disagreements in 70% of examples tried
» These images have unambiguous class semantics due to the
small perturbation

» Random search once again failed to find new disagreements

Figure 3: We trained an MNIST classifier with 32-bit floats and then truncated the associated
TensorFlow graph to 16-bit floats. Both the original and the truncated graph made the same predictions
on all 10000 elements of the MNIST test set, but the fuzzer was able to find disagreements within
an infinity-norm ball of radius 0.4 around 70% of the test images that we tried to fuzz. Left: the
accumulated corpus size of the fuzzer while running, for 10 runs. Lines that go all the way to the right
correspond to failed fuzzing runs. Right: an image found by the fuzzer that is classified differently by
the 32-bit and 16-bit neural networks.



Experimental Results

Undesirable Behavior in Character-Level Language Models

» Train a character-level language model using 2 layer LSTM on
the Tiny Shakespeare dataset

» Sample from model given priming string

» Enforce two "errors”: should not repeat same word too many
times in a row, should not output words from a " blacklist”

» Fuzz the model using hidden state of LSTM; use fixed random
seed which we reset at every sampling and mutation function
described earlier

> After 24 hours, both TensorFuzz and random search
generated repeat words

» TensorFuzz generated 6/10 words from blacklist compared to
1/10 from random search



Conclusion

» Introduced concept of CGF for neural networks and described
how to build a useful fuzzer in this context

» Demonstrated practical applicability of TensorFuzz by finding
numerical errors, finding disagreements between networks and

their quantized versions, and surfacing undesirable behavior in
RNNs

» Released an open source version of TensorFuzz



References

» https://arxiv.org/pdf/1807.10875.pdf


https://arxiv.org/pdf/1807.10875.pdf

	Introduction
	Background
	The TensorFuzz Library
	Experimental Results
	Conclusion
	References

