
TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing

A. Odena, I. Goodfellow

Google Brain

arXiv: 1807.10875

Reviewed by : Bill Zhang
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/


Outline

Introduction

Background

The TensorFuzz Library

Experimental Results

Conclusion

References



Introduction
Basic Premise and Motivation

I Tricky to make robust conclusions about techniques that are
hard to debug; the ’reproducibility crisis’ in machine learning

I Even straightforward questions about a network can be
computationally expensive to answer; current methods like
ReluPlex do not scale well

I Draw from a traditional software engineering technique,
Coverage-Guided Fuzzing (CGF), and create similar method
for neural networks



Background
Coverage-Guided Fuzzing

I Common technique used to find serious bugs in software;
common fuzzers include AFL and libFuzzer

I Fuzzing maintains an input corpus, randomly changes the
inputs using some mutation procedure, and keeps the changed
input if it adds additional coverage

I ”Coverage” is usually set to be the lines of code which have
been executed given an input

I This would not really work for neural networks because even
different inputs usually take the same branches when being
executed; branches are independent of the specific values of
the network’s input

I Instead, let coverage be determined by the network’s
activations



Background
Testing of Neural Networks

I Pei et al.: Introduced metric of neuron coverage for network
with ReLU units

I Ma et al.: Took, for each neuron, the range of values seen
during training, divided it into k chunks, and measured
whether each of the chunks had been ”touched”; also,
measured whether activation was ever above or below some
given bounds

I Sun et al.: Introduced metric inspired by Modified
Condition/Decision Coverage

I Tian et al.: Applies neuron coverage metric to DNNs in
self-driving car software; performed natural image
transformations and used principle of metamorphic testing

I Wicker et al.: Performed blackbox testing of image classifiers
using image-specific operations



Background
Opportunities for Improvement

I Success of CGF methods suggests that there should be an
analogous method for neural networks

I Other metrics like neuron coverage was shown to be too easy
to satisfy (25 randomly selected images from MNIST was
enough to activate all neurons)

I Some metrics also only apply to ReLUs, or are difficult to
generalize beyond ReLUs

I Want a metric that is simple, cheap to compute, and easily
applied to all architectures



The TensorFuzz Library
Basic Fuzzing Procedure

I Instead of interacting with computer program, interact with
TensorFlow graph which we can feed inputs and get outputs
from

I Unlike traditional CGF, restrict inputs to valid inputs
I Images are correct shape and size, values restricted to range of

values in actual dataset under consideration
I For text, restrict to characters present in dataset



The TensorFuzz Library
Basic Fuzzing Procedure

I Given the seed corpus, until instructed to stop, the fuzzer
chooses an input, mutates it, and feeds it to the neural
network

I Then, a set of coverage arrays and metadata arrays (from
which the objective function will be computed) are extracted
from the network

I If the mutated input adds coverage, add to corpus; add to test
cases if objective function is satisfied



The TensorFuzz Library
Detailed Fuzzing Procedure

I Input chooser
I Uniform random selection worked well
I Faster to use a heuristic p(ck , t) = etk−t

Σetk−t where p(ck , t) is the
probability of choosing element ck at time t and tk is when the
element was added to the corpus

I Mutator
I For images, either add white noise with user-specified variance

or add white noise but constrain the difference between input
and mutation to some l∞ norm; afterwards, clip image to
original input range

I For text, randomly delete a character, add a character, or
substitute a character



The TensorFuzz Library
Detailed Fuzzing Procedure

I Objective function
I Generally, we run the fuzzer with the goal of having the

network in some state - maybe a state regarded as erroneous
I Objective function is applied to metadata arrays and inputs

which cause errors are flagged

I Coverage analyzer
I Want to check if network is in a state that it has not been in

before
I Want the check to be fast (and simple)
I Want it to work for many types of computation graphs
I Want it to be hard to exercise full coverage to cover as many

behaviors as possible
I Want new coverage to provide incremental progress



The TensorFuzz Library
Detailed Fuzzing Procedure

I Coverage analyzer (cont.)
I Naive method would treat each activaton vector as new

coverage - all inputs trivially increase coverage
I Instead, look up nearest neighbor and add new activation

vector it is sufficient far away (greater than some L)
I Use open-source FLAN to compute nearest neighbors
I Found that performance is good even if only tracking logits or

layer before logits
I Potential optimization: do not actually need to know nearest

neighbor; just need existence within some L so could use
distance-sensitive bloom filter at the expense of missing some
”new” coverage vectors



The TensorFuzz Library
Detailed Fuzzing Procedure



The TensorFuzz Library
Batching and Nondeterminism

I TensorFlow graphs are made to take advantage of
hardware-parallelism, so process batch of inputs and analyze
coverage for batch of arrays each iteration

I Computation graphs often give nondeterministic results due to
intrinsic random functions and large accumulations on GPUs;
deal with this in naive way: if same input produces different
coverage, then simply have the input appear twice in the
corpus



Experimental Results
Numerical Errors in Trained Models

I Since neural networks use floating point operations, they are
susceptible to numerical issues during training and evaluation;
focus on finding inputs which result in NaN values

I These are usually difficult to find because they are triggered
by very specific inputs

I Numerical errors are important to find because they can be
very dangerous if first encountered in productions; CGF can
find a large number of these errors

I CGFs can quickly find these errors by adding check numeric
ops to metadata



Experimental Results
Numerical Errors in Trained Models

I Gradient descent based methods might be faster, but it is
unclear what kind of objective function you would use to find
NaN errors

I Random search is prohibitively inefficient for finding these
errors; unable to find a non-finite element



Experimental Results
Disagreements from Quantized Versions

I Quantization is where neural network weights are stored and
neural network computations are performed using numerical
representations which have fewer bits

I This technique reduces computational cost and size of
networks

I It’s important to find errors in quantized models because
quantization is not useful if accuracy is lowered too much

I Just checking existing data does not work: MNIST trained on
32-bits and truncated to 16-bits had no disagreements on
existing data



Experimental Results
Disagreements from Quantized Versions

I CGF can quickly find errors in small regions around data
I Running fuzzer with mutations restricted to 0.4 l∞ orb around

seed images resulted in disagreements in 70% of examples tried
I These images have unambiguous class semantics due to the

small perturbation

I Random search once again failed to find new disagreements



Experimental Results
Undesirable Behavior in Character-Level Language Models

I Train a character-level language model using 2 layer LSTM on
the Tiny Shakespeare dataset

I Sample from model given priming string

I Enforce two ”errors”: should not repeat same word too many
times in a row, should not output words from a ”blacklist”

I Fuzz the model using hidden state of LSTM; use fixed random
seed which we reset at every sampling and mutation function
described earlier

I After 24 hours, both TensorFuzz and random search
generated repeat words

I TensorFuzz generated 6/10 words from blacklist compared to
1/10 from random search



Conclusion

I Introduced concept of CGF for neural networks and described
how to build a useful fuzzer in this context

I Demonstrated practical applicability of TensorFuzz by finding
numerical errors, finding disagreements between networks and
their quantized versions, and surfacing undesirable behavior in
RNNs

I Released an open source version of TensorFuzz



References

I https://arxiv.org/pdf/1807.10875.pdf

https://arxiv.org/pdf/1807.10875.pdf

	Introduction
	Background
	The TensorFuzz Library
	Experimental Results
	Conclusion
	References

