Maximume-Likelihood
Augmented Discrete Generative
Adversarial Networks (MaliGAN)

Tong Che, et al.

Presenting: Yengeny Tkach

https://qdata.github.io/deep2Read/

Executive Summary

 MaliGAN is a GAN based generative model for discrete
sequences, trained using RL methods for variance reduction.

* The optimization objective of the generative function is
replaced in this work with KL(Q||P;) where P is the
distribution of the generated data and Q is a self-normalized
importance sampling (SIS) estimation of the data
distribution.

* To reduce the variance of the gradient signal the authors mix
sampling from the true data and the generated data
distributions.

Outline

* GAN — Basic ldea

* Discrete data challenges

* Importance Sampling

* MaliGAN — Basic

* policy gradient

* Sequential MaliGAN with Mixed MLE Training
* seqGAN

* Experiments

Basic |ldea of GAN

D tries to D tries to
output 1 output O
1 1
Differentiable Differentiable
— . function D function D
S>< i i
- X sampled X sampled
from data from model
Y
1
Differentiable
function G
o - L
o J\ Input noise
0 D, - Y 4

GAN Formally

* Value Function:
V(P,Gg, Dg)=Ex~pllogD (x)] + Ex-g[log(1 — D(x))]
=EypllogD()] + Ez-nz [log (1= D(6())]

* Monte-Carlo Approximation:

V(P,Gg, Dy,):%Z'{';l logD(x') + %Z'{Zl log (1 —D (G(zi)))
* Discriminator target:

mqu:lX V(P, Gy, Dy)

* Generator target:
mgn qu;lx V(P, Gg, Dy)

Algorithm Initialize ¢4 for D and 6, for G

* In each training iteration:

|Sample m examples {x*, x4, ..., x™} from data distribution
P(x)

e ISample m noise samples {z1, z?, ..., 2™} from the prior
h(z)

+ |Obtaining generated data {%1, %2, ..., ¥™}, ' = G(z')
* |Update discriminator parameters 6,4 to maximize
-V ——Z 1logD(x) + — Z -1 log (1 —D(x))

* g« Pag +nVV(dqg)

Learning
D

Repeat
k times

prior Pprior(Z)
Learning «lUpdate generator parameters 6, to minimize

o =SS loghlely + 27 10g (1- D (6(2)))

Once * 0, < 0, —nVV(6,)

GAN for Discrete sequences

Adapting GAN to generating discrete data is challenging:
 How do we calculate \717(99)? G(z) is discontinuous.

* How can we reduce the variance of \7[7(9g) for long
sequence generation

Importance Sampling

BeplfOO] = | fOOPGIAx

j o0 P oydx

q(x)
- [rew@acds

= Eyolf GOW(x)]

In case porq Ex-o Lf Co)w(x)]
are scaled - T [w(x)]
density e p(x)

functions w(x) = 7(x0) w(x) - Importance
qx Weights

Importance sampling in MaliGAN

Basic idea: optimal discriminator D*(x) holds:

pa() . D()
a0 PeY) = 1500

D*(x) = pe(x)

Where p4(x) in true data distribution and pg(x) is generated.
We can estimate p4(x) by g(x) :

D
q(x) = EFfD(Z%] pe(x) ,1p(x) = — z()x()x)

Generator loss:

Ls(0) = KL(g(x)||pe(x))

716(6) = ~Ep, [Vologne()] = ~Ep, (2 2 Tylogns ()

Why selt normalization?

If we would use rp(x):

* In the beginning of the training D (x) close to 0 and rp(x)
will offer a very poor gradient direction with very little
change.

* For some instances during the training D (x) will be close to
1 and rp (x) will explode.

* This ensures that the model can always learn something as
long as there exist some generations better than others
and controls the decreases the gradient variance.

MaliGAN Algorithm

Algorithm 1 MaliGAN

Require: A generator p with parameters 6.

A discriminator D(z) with parameters 0.

A baseline b.
: for number of training iterations do

1
2: for k steps do

3: Sample a minibatch of samples ixlly;l from py.
4:

5

Sample a minibatch of samples {y; }:i~, from pg.
Update the parameter of discriminator by taking gradient
ascend of discriminator loss

2 _[Voulog D(y:)] +) [V, log(1 — D(x:))

end for
Sample a minibatch of samples {x; }:~; from ps.
Update the generator by applying gradient update

PN

Z(ro04) __ 1) log pa(x:)

Y. To(x:)

9: end for

Policy Gradient

* J(0) the expected reward under a stochastic policy my

r(t) is the reward of trajectory T
J(0) = Erngn)lr(T)] = /TTH(T:)I"(T:)(I'T

Stochastic policy gradient:

Vo J(0) = /V(mo(r)r(r)dr :/‘/TH(T)VH log mg(7)r(7)dT

Errry(r) Vo logmg(T)r(7)]

In discrete GANs my is the generator Gy that produces a
distribution over discrete objects (actions)

. . . p (.X')
r(7) in MaliGAN is NS

1(7) is defined as:

To(S1,a1,...,87, a'r To(ar|se)p(Sey1/8e. ar)

||z~a

|

7o (T)

Take the log:

log mg(7) = log p(s1) + Z log mg(ar|ss) + log p(si41/se. as)
t=1

The first and the last term does not depend on 6 and can be removed.

T
Vi IW) + Zlog mg(az|ss) + lwat)]

t=1

mixed MLE-MaliGAN

To further decrease the variance that maybe accumulated over
long sequences:

* use the training data for N time steps and switch to free
running mode for the remaining T-N time steps.

* For the first N tokens, that are from the training data, the
generator objective is MLE and for the rest is the MaliGAN

VLG =E4[V log pg(x)]
=E,, [V log ps(x<n)] + Eq[V log pe(X> N |X<N)]
=Epc[v logpg(.’lf(), Ly e :ET)]

+ Ep,,[Z rp(x)V log pg(az|s:))
t=N+1

mixed MLE-MaliGAN

e foreachO<SN<T:

TrL,m

VLG~), (}:TD(XU) —b)Vlogpo(x7} |x5)

1=1,7=1 TD(X"J)
m N

+ — Z ZPO(a’tlst = En(xi,5)
t=1 t=0

4)

* During the training procedure N is decreased from T towards O

Algorithm 2 Sequential MaliGAN with Mixed MLE
Training

Require: A generator p with parameters 0.

A discriminator D(z) with parameters 0.
Maximum sequence length 7, step size K.
A baseline b, sampling multiplicity m.

I:. N=T
2: Optional: Pretrain model using pure MLE with some epochs.
3: for number of training iterations do

ol AR A

10:
11:

12:

N=N-K
for k steps do
ample a minibatch of sequences t.{hy i ey from pd
hile keeping the first /N steps the same as {y:}i%,
samplc a minibatch of sequences {x; }~; from py from
time step V.
Update the discriminator by taking gradient ascend of
discriminator loss.

2 _[Volog D(y:)] + > [Vo, log(1 — D(x))]

end for

Sample a minibatch of sequences {x; };~; from pg.

For each sample x; with length larger than /V in the mini-
batch, clamp the generator to the first NV words of s, and
freely run the model to generate m samples X; ;,j =
1, - - - m till the end of the sequence.

Update the generator by applying the mixed MLE-Mali
gradient update

N ~ m,n T'D(xl.]) _ >“\’- SA,
GNi—g—l(z'rD(xa,j) b)V log po (xi5" [x;"™)

+ = Z po(ai|s;)

tltO

13: end for

Policy Gradient

 Alternative forms:

o0
g=E [Z W Vglogme(a | st)| , (1)
t=0
where ¥; may be one of the following:
. Zfio ri: total reward of the trajectory. 4. Q™ (s¢,as): state-action value function.
2. Yo, ry: reward following action ay. 5. A™(s¢,a¢): advantage function.
3. Yoo, v — b(s): baselined version of
previous formula. 6. ¢ + V™(8441) — V™(s¢): TD residual.

The latter formulas use the definitions

o0 o0
V7T(s¢) = Es«(ﬁ:,, [z 7't+l] Q" (s¢, a¢) = Efz'ttrl{:’c' [Z 7‘t+l] (2)

1=0 1=0
A7 (sg,a¢) := Q" (s¢,a¢) — V™(s¢), (Advantage function). (3)

Fig. 1. A general form of policy gradient methods. (Image source: Schulman et al., 2016)

SeqGAN Algorithm

Vj(8) = Ez Qe Y1.e—1)VIogpe (Ve Y1.4-1)

t=1

G Ngxt MC D

action search
Reward
State
Reward
Reward
T Reward
|
Policy Gradient

an (s =Y1u—1,a=1yt) =

D¢,(Y1 t)

{ 1{’ ZN Dy(Yiir), Yiir € MCCs (Y1..;N) for t<T

for

(4)

t="1T,

SeqGAN Algorithm

Algorithm 1 Sequence Generative Adversarial Nets

Require: generator policy Gg; roll-out policy G3; discriminator
D,; a sequence dataset S = {X;.7}

1: Initialize Gg, D, with random weights 6, ¢.

2: Pre-train G using MLE on &

3: B+ 0

4: Generate negative samples using Gy for training D

5: Pre-train Dy via minimizing the cross entropy

6: repeat

7. for g-steps do

8: Generate a sequence Y1.7 = (y1,...,yr) ~ Gp

s fortinl: T do
10: Compute Q(a = yi; s = Y1.4—1) by Eq. (4)
11: end for
12: Update generator parameters via policy gradient Eq. (8) 0« 0+ anVoeJ(0), @)
13: end for
14: for d-steps do
15; Use current Gy to generate negative examples and com-

bine with given positive examples &

16: Train discriminator Dy for k epochs by Eq. (5) min —Ey~p,,..[10g Ds(Y)] — Ey~c,[log(1 — Ds(Y))]. (5)
17: end for ¢ | |
18: [« 0

19: until SeqGAN converges

MaliGAN with MICTS

* Alternative loss function where r(7) is replaced by Q(a, s)

m,L;
2L ~ i i) i
VLg(0) ~ m> Qat,sl) Z Q(a}, sp)V log pe(aisy)

e Che et al. use MCTS

it

t Repeated X times
Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until
a leaf node is reached

One or more nodes
might be created

One simulated The result of this game is
game is played backpropagated in the tree

Experiments

 Discrete MINIST

Discriminator Loss

Generator Loss

$S0

$501

W —~\§ o
*r~a\NowQ-r
NOYOQabLO
I ™0
Oy~ NN
SNXN>rr3+ T %%
003 QN0 a N Qg
Qo N B) &~

QI N~
AN Yoy S N
TN JI e
CONQ 0N
>0 A OGO
N =N Q-
o~ O~ Do
P~

Figure 2. Samples generated by REINFORCE-like model (left)

and by MaliGAN (right).

Experiments

* Chinese poem generation

Model Poem-5 Poem-7
BLEU-2 PPL BLEU-2 PPL

MLE 06934 564.1 03186 192.7
SeqGAN 0.7389

MaliGAN-basic 0.7406 548.6 0.4892 1822
MaliGAN-full 0.7628 542.7 0.5526 180.2

oo Pure MLE
MaliGAN-basic
MaliGAN-full

Pure MLE
MaliGAN-basic
MaliGAN-full

Perplexity

Perplexity

)
’
epoch epoch

* Sentence-Level Language Modeling

MLE MaliGAN-basic MaliGAN-full

Valid-Perplexity 141.9 131.6 128.0
Test-Perplexity 138.2 125.3 123.8

Discussion

Main takeaways:

 Try to reduce the variance and keep the bias unchanged to
stabilize learning.

* Off-policy gives us better exploration and helps us use data
samples more efficiently.

* Experience replay (training data sampled from a replay
memory buffer);

e Batch normalization;

References

T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song, and Y. Bengio.

Maximum-likelihood augmented discrete generative
adversarial networks. arXiv preprint arXiv:1702.07983, 2017.

Yu, Lantao, Zhang, Weinan, Wang, Jun, and Yu, Yong. Seqgan:
sequence generative adversarial nets with policy gradient. In
Thirty-First AAAlI Conference on Artificial Intelligence (AAAI-
17), 2017.

https://medium.com/@jonathan hui/rl-policy-gradients-
explained-9b13b688b146

https://lilianweng.github.io/lil-log/2018/04/08/policy-
gradient-algorithms.html

