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Executive Summary

 MaliGAN is a GAN based generative model for discrete
sequences, trained using RL methods for variance reduction.

* The optimization objective of the generative function is
replaced in this work with KL(Q||P;) where P is the
distribution of the generated data and Q is a self-normalized
importance sampling (SIS) estimation of the data
distribution.

* To reduce the variance of the gradient signal the authors mix
sampling from the true data and the generated data
distributions.
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Basic |ldea of GAN
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GAN Formally

* Value Function:
V(P,Gg, Dg )=Ex~pllogD (x)] + Ex-g[log(1 — D(x))]
=EypllogD()] + Ez-nz [log (1= D(6() )]

* Monte-Carlo Approximation:

V(P,Gg, Dy, ):%Z'{';l logD(x') + %Z'{Zl log (1 —D (G(zi)))
* Discriminator target:

mqu:lX V(P, Gy, Dy )

* Generator target:
mgn qu;lx V(P, Gg, Dy )



Algorithm Initialize ¢4 for D and 6, for G

* In each training iteration:

|Sample m examples {x*, x4, ..., x™} from data distribution
P(x)

e ISample m noise samples {z1, z?, ..., 2™} from the prior
h(z)

+ |Obtaining generated data {%1, %2, ..., ¥™}, ' = G(z')
* |Update discriminator parameters 6,4 to maximize
-V ——Z 1logD(x ) + — Z -1 log (1 —D(x ))

* g« Pag +nVV(dqg)

Learning
D

Repeat
k times

prior Pprior(Z)
Learning «lUpdate generator parameters 6, to minimize

o =SS loghlely + 27 10g (1- D (6(2)))

Once * 0, < 0, —nVV(6,)




GAN for Discrete sequences

Adapting GAN to generating discrete data is challenging:
 How do we calculate \717(99)? G(z) is discontinuous.

* How can we reduce the variance of \7[7(9g) for long
sequence generation



Importance Sampling
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Importance sampling in MaliGAN

Basic idea: optimal discriminator D*(x) holds:

pa() . D()
a0  PeY) = 1500

D*(x) = pe(x)

Where p4(x) in true data distribution and pg(x) is generated.
We can estimate p4(x) by g(x) :

D
q(x) = EFfD(Z%] pe(x) ,1p(x) = — z()x()x)

Generator loss:

Ls(0) = KL(g(x)||pe(x))

716(6) = ~Ep, [Vologne()] = ~Ep, (2 2 Tylogns ()




Why selt normalization?

If we would use rp(x):

* In the beginning of the training D (x) close to 0 and rp(x)
will offer a very poor gradient direction with very little
change.

* For some instances during the training D (x) will be close to
1 and rp (x) will explode.

* This ensures that the model can always learn something as
long as there exist some generations better than others
and controls the decreases the gradient variance.



MaliGAN Algorithm

Algorithm 1 MaliGAN

Require: A generator p with parameters 6.

A discriminator D(z) with parameters 0.

A baseline b.
: for number of training iterations do

1
2:  for k steps do

3: Sample a minibatch of samples ixlly;l from py.
4:

5

Sample a minibatch of samples {y; }:i~, from pg.
Update the parameter of discriminator by taking gradient
ascend of discriminator loss

2 _[Voulog D(y:)] + ) [V, log(1 — D(x:))

end for
Sample a minibatch of samples {x; }:~; from ps.
Update the generator by applying gradient update

PN

Z( ro04) __ 1) log pa(x:)

Y. To(x:)

9: end for




Policy Gradient

* J(0) the expected reward under a stochastic policy my

r(t) is the reward of trajectory T
J(0) = Erngn)lr(T)] = /TTH(T:)I"(T:)(I'T

Stochastic policy gradient:

Vo J(0) = /V(mo(r)r(r)dr :/‘/TH(T)VH log mg(7)r(7)dT

Errry(r) Vo logmg(T)r(7)]

In discrete GANs my is the generator Gy that produces a
distribution over discrete objects (actions)

. . . p (.X')
r(7) in MaliGAN is NS




1(7) is defined as:

To(S1,a1,...,87, a'r To(ar|se)p(Sey1/8e. ar)

||z~a

|

7o (T)

Take the log:

log mg(7) = log p(s1) + Z log mg(ar|ss) + log p(si41/se. as)
t=1

The first and the last term does not depend on 6 and can be removed.

T
Vi IW) + Zlog mg(az|ss) + lwat)]

t=1



mixed MLE-MaliGAN

To further decrease the variance that maybe accumulated over
long sequences:

* use the training data for N time steps and switch to free
running mode for the remaining T-N time steps.

* For the first N tokens, that are from the training data, the
generator objective is MLE and for the rest is the MaliGAN

VLG =E4[V log pg(x)]
=E,, [V log ps(x<n)] + Eq[V log pe(X> N |X<N)]
=Epc[v logpg(.’lf(), Ly e :ET)]

+ Ep,,[ Z rp(x)V log pg(az|s:))
t=N+1



mixed MLE-MaliGAN

e foreachO<SN<T:

TrL,m

VLG~ ), (}:TD(XU) —b)Vlogpo(x7} |x5)

1=1,7=1 TD(X"J)
m N

+ — Z ZPO(a’tlst = En(xi,5)
t=1 t=0

4)

* During the training procedure N is decreased from T towards O



Algorithm 2 Sequential MaliGAN with Mixed MLE
Training

Require: A generator p with parameters 0.

A discriminator D(z) with parameters 0.
Maximum sequence length 7, step size K.
A baseline b, sampling multiplicity m.

I:. N=T
2: Optional: Pretrain model using pure MLE with some epochs.
3: for number of training iterations do

ol AR A

10:
11:

12:

N=N-K
for k steps do
ample a minibatch of sequences t.{hy i ey from pd
hile keeping the first /N steps the same as {y:}i%,
samplc a minibatch of sequences {x; }~; from py from
time step V.
Update the discriminator by taking gradient ascend of
discriminator loss.

2 _[Volog D(y:)] + > [Vo, log(1 — D(x))]

end for

Sample a minibatch of sequences {x; };~; from pg.

For each sample x; with length larger than /V in the mini-
batch, clamp the generator to the first NV words of s, and
freely run the model to generate m samples X; ;,j =
1, - - - m till the end of the sequence.

Update the generator by applying the mixed MLE-Mali
gradient update

N ~ m,n T'D(xl.]) _ >“\’- SA,
GNi—g—l(z'rD(xa,j) b)V log po (xi5" [x;"™)

+ = Z po(ai|s;)

tltO

13: end for




Policy Gradient

 Alternative forms:

o0
g=E [Z W Vglogme(a | st)| , (1)
t=0
where ¥; may be one of the following:
. Zfio ri: total reward of the trajectory. 4. Q™ (s¢,as): state-action value function.
2. Yo, ry: reward following action ay. 5. A™(s¢,a¢): advantage function.
3. Yoo, v — b(s): baselined version of
previous formula. 6. ¢ + V™(8441) — V™(s¢): TD residual.

The latter formulas use the definitions

o0 o0
V7T(s¢) = Es«(ﬁ:,, [z 7't+l] Q" (s¢, a¢) = Efz'ttrl{:’c' [Z 7‘t+l] (2)

1=0 1=0
A7 (sg,a¢) := Q" (s¢,a¢) — V™(s¢), (Advantage function). (3)

Fig. 1. A general form of policy gradient methods. (Image source: Schulman et al., 2016)



SeqGAN Algorithm

Vj(8) = Ez Qe Y1.e—1 )VIogpe (Ve Y1.4-1 )
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SeqGAN Algorithm

Algorithm 1 Sequence Generative Adversarial Nets

Require: generator policy Gg; roll-out policy G3; discriminator
D,; a sequence dataset S = {X;.7}

1: Initialize Gg, D, with random weights 6, ¢.

2: Pre-train G using MLE on &

3: B+ 0

4: Generate negative samples using Gy for training D

5: Pre-train Dy via minimizing the cross entropy

6: repeat

7. for g-steps do

8: Generate a sequence Y1.7 = (y1,...,yr) ~ Gp

s fortinl: T do
10: Compute Q(a = yi; s = Y1.4—1) by Eq. (4)
11: end for
12: Update generator parameters via policy gradient Eq. (8) 0« 0+ anVoeJ(0), @)
13:  end for
14:  for d-steps do
15; Use current Gy to generate negative examples and com-

bine with given positive examples &

16: Train discriminator Dy for k epochs by Eq. (5) min —Ey~p,,..[10g Ds(Y)] — Ey~c,[log(1 — Ds(Y))]. (5)
17:  end for ¢ | |
18: [« 0

19: until SeqGAN converges




MaliGAN with MICTS

* Alternative loss function where r(7) is replaced by Q(a, s)

m,L;
2L ~ i i) i
VLg(0) ~ m> Qat,sl) Z Q(a}, sp)V log pe(aisy)

e Che et al. use MCTS

it

t Repeated X times
Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until
a leaf node is reached

One or more nodes
might be created

One simulated The result of this game is
game is played backpropagated in the tree




Experiments

 Discrete MINIST
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Generator Loss
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Figure 2. Samples generated by REINFORCE-like model (left)

and by MaliGAN (right).



Experiments

* Chinese poem generation

Model Poem-5 Poem-7
BLEU-2 PPL BLEU-2 PPL

MLE 06934 564.1 03186  192.7
SeqGAN  0.7389

MaliGAN-basic  0.7406  548.6  0.4892 1822
MaliGAN-full  0.7628 542.7 0.5526 180.2

oo Pure MLE
MaliGAN-basic
MaliGAN-full

Pure MLE
MaliGAN-basic
MaliGAN-full

Perplexity

Perplexity

)
’
epoch epoch

* Sentence-Level Language Modeling

MLE MaliGAN-basic MaliGAN-full

Valid-Perplexity 141.9 131.6 128.0
Test-Perplexity 138.2 125.3 123.8




Discussion

Main takeaways:

 Try to reduce the variance and keep the bias unchanged to
stabilize learning.

* Off-policy gives us better exploration and helps us use data
samples more efficiently.

* Experience replay (training data sampled from a replay
memory buffer);

e Batch normalization;
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