Boundary-Seeking
Generative Adversarial
Networks (BGANS)

Hjelm, R. Devon, et al.

Presenting: Yevgeny Tkach

https://qgdata.github.io/deep2Read/

Executive Summary

* BGAN is framework that allows GAN to generate both
discrete and continuous data

e Discriminator is trained by maximizing the f-divergence
between the data and generated distributions

e Generator is trained to minimize the f-divergence between
the generated distribution and a self-normalized importance
sampling (SIS) estimation of the data distribution

* Experiments show state of the art results in training GANs
on discrete data generation and high stability in training
GANs with continuous data.

Outline

e GAN — Basic Idea
e f - GAN Introduction

* Importance Sampling - Detour
* BGAN

Basic |ldea of GAN

* The data we want to generate has a distribution

P(x)

[x] This

image

cannot = ey
current

High
Probability

Image
Space

P(x)

[x] This
image
cannot
currentl

[x] This
image
cannot
currentl

—

Low
Probability

Basic |ldea of GAN

* A generator G is a network. The network defines a
probability distribution.

Normal Q(x) P(x)
Distribution
O — s
XE G
As close as
It is difficult to compute Q(x) possible

We can only sample from the

distribution.
https://blog.openai.com/generative-models/

Basic |ldea of GAN

D tries to D tries to
output 1 output O
1 1
Differentiable Differentiable
— . function D function D
S>< i i
- X sampled X sampled
from data from model
Y
1
Differentiable
function G
o - L
o J\ Input noise
0 D, - Y 4

GAN Intuition

Poorly fit
model

After
updating

After
updating

Mixed
strategy
equilibrium

GAN Formally

* Value Function:
V(P,Gg, Dg)=Ex~pllogD (x)] + Ex-g[log(1 — D(x))]
=EypllogD()] + Ez-nz [log (1= D(6())]

* Monte-Carlo Approximation:

V(P,Gg, Dy,):%Z'{';l logD(x') + %Z'{Zl log (1 —D (G(zi)))
* Discriminator target:

mqu:lX V(P, Gy, Dy)

* Generator target:
mgn qu;lx V(P, Gg, Dy)

Algorithm Initialize ¢4 for D and 6, for G

* In each training iteration:

|Sample m examples {x*, x4, ..., x™} from data distribution
P(x)

e ISample m noise samples {z1, z?, ..., 2™} from the prior
h(z)

+ |Obtaining generated data {%1, %2, ..., ¥™}, ' = G(z')
* |Update discriminator parameters 6,4 to maximize
-V ——Z 1logD(x) + — Z -1 log (1 —D(x))

* g« Pag +nVV(dqg)

Learning
D

Repeat
k times

prior Pprior(Z)
Learning «lUpdate generator parameters 6, to minimize

o =SS loghlely + 27 10g (1- D (6(2)))

Once * 0, < 0, —nVV(6,)

f - GAN Introduction

« Sebastian Nowozin, Botond Cseke, Ryota
Tomioka, “f-GAN: Training Generative Neural

Samplers using Variational Divergence Minimization’,

NIPS, 2016

« One sentence: you can use any f-divergence

f-divergence P and Q are two distributions. p(x) and q(x)
are the density functions respectively.

p(x) f is convex

D¢(P||Q) =f¢1(x)f(m) dx f1) = 0

* Every convex function f has a conjugate function f*

fr@) = max {xt—f()}—f(x)=_max {xt—f"(t)}

xedom(f) tedom(f*)
(1t — f(x1)
"(t1) fr(t2)
Xzt — f(x32) : f B
X3t — f () = ‘
= =\

Connection with GAN

fr©= max (xt—f} —f@)=_max (xt—f0)

tedom(f*)

p(x) p(x)
) dx

PO 4 9 PIEY

D¢ (P||Q) = f Cl(x)f(m

D is a function whose input is x, and outputis t

> rggg[q(x) (%l&) - f*(Dﬁ)> dx

= maxf p(x)D(x)dx —f q(x)f*(D(x))dx

DeD
X X

Connection with GAN
(
Ds(P||Q) ngx<fp(x)D(x)dx—j q(x)f*(D(x))dx

\

~"

\ X J
= max{Ex-p[D(x)] — Ex-o[f"(D ()]}
Samples from P Samples from Q

D:(P||Q) = maX{Ex plveD(x)] — x~Q[f (U ° D(x))]}

G" =arg m1n D:(P||Q)

= arg mG;n maX{ExNP v o D(x)] — Ezunip|f*(ve D(G(2))]}

GAN value function:
V(P,Go, Dy)=Ex~pllogD(x)] + E,pz [log (1 - D(6(2)))]

Importance Sampling - Detour

BeplfO] = | FOPGIAx

| £ P g0

q(x)
= [reweama
= Ex~Q Lf ()w(x)]
resoed | - Eeolf W]
density Ex-qlw(x)]
functions w(x) = P w(x) - Importance

q(x) Weights

Boundary Seeking GAN - BGAN

Theorem 1: P and Q as in f-GAN, and D* € D satisfying:
Dr(PI1Q) = max{Ex~p[D ()] — Ex~o|f* (D ()]}

Then: p(x) = (53)(D" (x))a

Proof:

D (P||Q) = Ex~g [f (%)] = Ex-q

p(x)

SU.p {tm —

f7 (t)}

|

p re-written in terms of g and a scaling factor

w(x)= (%)(D*(x)) — Importance weights

I

p(x) _ af* ()

q(x)

ot

Boundary Seeking GAN - BGAN

BGAN suggests to use the divergence between g(x) and the self
normalized importance sampling (IS) estimation of p(x):

w(x)

p

p(x) = q(x)

Where:

B = Exqlw(x)]

BGAN — IS Intuition
Q(x)

IS proxy with optimal
M A* discriminator D

)

A

* Divergence between A should have lower variance than if
taking arbitrary samples from P (x)

* Since G(z) defines a distribution that x is sampled from -
the variance can be further decreased by taking multiple

samples from the same z

BGAN — reduced variance
We can restate everything in terms of conditional distributions:
* q(x) =), g(x|2)h(2)dz

e g(x|2):Z — [O,l]d - multivariate Bernoulli distribution

* a(z) = Ex_g(x|z)lw(x)] - similar to

w(x)

* Plxlz) = 55 9(x]2)

* D (P()I1q(x))=En [Pk (P (x]|2)[|q(x|2))]

* VEn)[Dk(P(x]|2)[|q(x|z))] approximates with two MC

BGAN - Algorithm

Algorithm 1 . Discrete Boundary Seeking GANs
(0, ¢) « initialize the parameters of the generator and statistic network

repeat
£ ~ P > Draw N samples from the empirical distribution
2™ ~ h(z) >Draw N samples from the prior distribution
z(mIn) ~ go(z | 2(™) > Draw M samples from each conditional gg(z | 2("™)) (drawn

independently if P and Qg are multi-variate)

w(z ™M) « (0f*/0T) o (v o Fy(z(™!™))

W (z(™)) — w(z™m)/ 3 w(z(™ ™) > Compute the un-normalized and normalized
importance weights (applied uniformly if P and Qg are multi-variate)

V(P,Qg,Ty) « &> Fp(3™) — £ > L3 w(@™™) > Estimate the variational
lower-bound

¢ < &+ 7V V(P,Qp, Tp) > Optimize the discriminator parameters

0 0+ 797 Donm W(@™™)Vglog go(xz(™™ | z) > Optimize the generator parameters
until convergence

Boundary Seeking GAN - BGAN

Df(Pdatal |Pg) = maX{Ex~Pdat [veD(x)] —

B(x) = W(’“) M) g (x)

Ex-p, [f (V © D(x))]}

of”

Table 1: Important weights and nonlinearities that ensure

Importance weights for f-divergences

f-divergence v(y) w(x) = (0f*/0T)(T(x))
GAN —log (1 +e7Y) _ 1_el_qu — oFo (@)
Jensen-Shannon log2—log(l4+e7Y) | — 2—61—T¢ — oFo(2)
KL y+ 1 e(To(@)—1) — Fy(=)
Reverse KL —e Y L _ oFy(a)

Ty(x)
Squared-Hellinger 1 — e v/? 1 Fy(z)

BGAN — Experiments

Train Measure Eval Measure (lower 1s better)
JS reverse KL Wasserstein
BGAN -JS 0.37 (£0.02) | 0.16 (£0.01) | 0.40 (£0.03)

BGAN - reverse KL 0.44 (£0.02) | 0.44 (£0.03) | 0.45 (£0.04)
WGAN-GP (samples) | 0.45 (£0.03) | 1.32 (£0.06) | 0.87 (£0.18)
WGAN-GP (softmax) - - 0.54 (0.12)

BGAN — Experiments

RS M
bo' .

_
oW
-
Piy
ES
A

: s .
w— . ‘:' 1 1
4 5 ‘w

v g A,
- } ' i ;
o | B3

And it ’s miant a quert could he He weirst placed produces hopesi
” We pait of condels of money wi Sance Jory Chorotic , Sen doesin
Lankard Avaloma was Mr. Palin, What was like one of the July 2
Thene says the sounded Sunday in | The BBC nothing overton and slea
About dose and warthestrinds fro College is out in contesting rev

BGAN — Continuous case

Recall:
G" = arg mGin Df(Pdata”PG)

10l (3] o250

ﬁ Max when V {t% —f* (t)}=0

p() _9f

ﬁ p(x) = q(x) whenw(x) =1
G*=arg mGirl(IOQW(G(Z)))Z

)

G*=arg mGjnD(G(z))2

BGAN — Continuous case

f-GAN:
G*=arg mm{Epr vo D) — Eznen [f (17 o D(G (Z)))]}

GAN (Proxy GAN):
G" = argmin {Ex~p[logD(x)] t Eznz) [108 (1 -D(G (Z)))n

BGAN:
6" = argminE, y»nD(G(2))* & wi) =1 & px) =q@)

BGAN Contmuous Experlments
4 ';"44""”‘5" i

":. - q__ | \r"f éﬁ
! . R “.t. (g
o M

Q -,'; “'*A

- “" ‘1 At/ !71
F ‘ﬁi K il
L) Alald o

Imagenet

¥ Figure 3: Highly realistic samples from a genera-
tor trained with BGAN on the CelebA and LSUN

= -&t‘ datasets. These models were trained using a deep
ResNet architecture with gradient norm regular-
| ization (Roth et al., 2017). The Imagenet model
was trained on the full 1000 label dataset without
. . conditioning.

S0 epochs

100 epochs

BGAN — Continuous Experiments

* Generator trained for 5 steps for every 1 step of the
discriminator

BGAN — Continuous Experiments

* Train a DCGAN using the proxy loss.
* Train the discriminator for 1000 more steps
* Perform gradient descent directly on the pixels

0.0025
Starting image (generated) — GAN
— BGAN
proxy GAN

0).0020

0 1000 2000 3000 4000 5000
Updates

Exper

BGAN — Continuous

.vmwmmMuﬂ“.v

t

@ MH

T soepdnnez

Discussion

