
Boundary-Seeking	
Generative	Adversarial	
Networks	(BGANs)
Hjelm,	R.	Devon,	et	al.	

Presenting:	Yevgeny	Tkach

https://qdata.github.io/deep2Read/

Executive	Summary

• BGAN	is	framework	that	allows	GAN	to	generate	both	
discrete	and	continuous	data

• Discriminator	is	trained	by	maximizing	the	f-divergence	
between	the	data	and	generated	distributions

• Generator		is	trained	to	minimize	the	f-divergence	between	
the	generated	distribution	and	a	self-normalized	importance	
sampling	(SIS)	estimation	of	the	data	distribution	

• Experiments	show	state	of	the	art	results	in	training	GANs	
on	discrete	data	generation	and	high	stability	in	training	
GANs	with	continuous	data.

Outline

• GAN	– Basic	Idea
• f	- GAN	Introduction
• Importance	Sampling - Detour

• BGAN

Basic	Idea	of	GAN

• The	data	we	want	to	generate	has	a	distribution	
! "

! "

High	
Probability

Low	
Probability

This
image
cannot
currentl

This
image
cannot
currentl

This
image
cannot
currentl

Image
Space

Basic	Idea	of	GAN

• A	generator	G	is	a	network.	The	network	defines	a	
probability	distribution.	

generator	
G# " = % #

Normal	
Distribution

& " ! "

As	close	as	
possible

https://blog.openai.com/generative-models/

It	is	difficult	to	compute	& "
We	can	only	sample	from	the	
distribution.

Basic	Idea	of	GAN

GAN	Intuition

GAN	Formally
• Value	Function:

• Monte-Carlo	Approximation:

• Discriminator	target:

• Generator	target:

' ℙ, %*, +,	 =./~1 234+ " + ./~6 log	 1 − + "
=./~1 234+ " + .<~=(<) log	 1 − + % #

max
,

'C ℙ, %*, +,	 	

min
*
max
,

'C ℙ, %*, +,	 	 	

'C ℙ, %*, +,	 =
F
G
∑ 234+ "IG
IJF + F

G
∑ 234 1 − + % #IG
IJF

• In	each	training	iteration:
• Sample	m	examples	 "F, "K, … , "G from	data	distribution	
! "

• Sample	m	noise	samples	 #F, #K, … , #G from	the	prior	
ℎ #

• Obtaining	generated	data	 "NF, "NK, … , "NG ,	"NI = % #I
• Update	discriminator	parameters	OP to	maximize	

• 'C = F
G
∑ 234+ "IG
IJF + F

G
∑ 234 1 − + "NIG
IJF

• QP ← QP + ST'C QP
• Sample	another	m	noise	samples	 #F, #K, … , #G from	the	
prior	!UVIWV #

• Update	generator	parameters	OX to	minimize

• 'C = F
G
∑ 234+ "IG
IJF + F

G
∑ 234 1 − + % #IG
IJF

• OX ← OX − ST'C OX

Algorithm

Repeat	
k	times

Learning	
D

Learning	
G

Initialize	QP for	D	and	OX for	G

Only	
Once

f	- GAN	Introduction

• Sebastian Nowozin, Botond Cseke, Ryota
Tomioka, “f-GAN:	Training	Generative	Neural	
Samplers	using	Variational Divergence	Minimization”,
NIPS, 2016

• One sentence: you can use any f-divergence

+Y !||& = [\ "]
^ "
\ " _"

/

f	is	convex

f(1)	=	0

f-divergence ! and	& are	two	distributions.	^ " and	q "
are	the	density	functions	respectively.

• Every	convex	function	f	has	a	conjugate	function	f*
]∗ b = max

/∈PWG Y
"b −] "

"Fb −] "F

"Kb −] "K

"db −] "d

bbF bK

]∗ bF]∗ bK

] " = max
e∈PWG Y∗

"b −]∗ b

]∗ b = max
/∈PWG Y

"b −] "] " = max
e∈PWG Y∗

"b −]∗ b

+Y !||& = [\ "]
^ "
\ " _"

/

= [\ " max
e∈PWG Y∗

^ "
\ " b −]∗ b _"

/

^ "
\ "

^ "
\ "

D is	a	function	whose	input	is	x,	and	output	is	t

Connection	with	GAN

= max
g∈h

[^ " + " _" − [\ "]∗ + " _"
//

≥ max
g∈h

[\ "
^ "
\ " + " −]∗ + " _"

/

Connection	with	GAN
+Y !||& ≥ max

g
[^ " + " _" − [\ "]∗ + " _"

//

= max
g

./~1 + " − ./~6]∗ + "

Samples	from	P Samples	from	Q

+Y !||& ≥ 	max
g

./~1 j ∘ + " − ./~6]∗ j ∘ + "

%∗ = lm4min
n
+Y !||& 	

						= lm4min
n
max
o

./~1 j ∘ + " − .<~=(<)]∗ j ∘ + %(#)

GAN	value	function:

' ℙ, %*, +,	 =./~1 234+ " + .<~=(<) log	 1 − + % #

Importance	Sampling - Detour

./~1[](")] = 		[](")^ " _"
�

�

= 		[](")
^ "
\ " \(")_"

�

�

= 		[] " s " \(")_"
�

�
= ./~6] " s "

=
./~6] " s "
./~6 s "

s " = 	
^ "
\ "

In	case	p	or	q	
are	scaled	
density	
functions s " - Importance	

Weights

Boundary	Seeking	GAN	- BGAN
Theorem	1:	!	lt_	& as	in	f-GAN,	and	+∗ ∈ D satisfying:

+Y !||& = max
g

./~1 + " − ./~6]∗ + "

Then:	^ " = (�Y
∗

�o)(+
∗("))q(x)

Proof:

+Y !||& = ./~6]
^ "
\ " = ./~6 sup

e
b
^ "
\ " −]∗ b

^ re-written	in	terms	of	\ and	a	scaling	factor	
w(x)= (�Y

∗

�o)(+
∗(")) – Importance	weights

U /
Ç /

=	
�Y∗ e
�e

Boundary	Seeking	GAN	- BGAN
BGAN	suggests	to	use	the	divergence	between	\(")	and	the	self	
normalized	importance	sampling	(IS)	estimation	of		^ " :

N̂ " =
s(")
ä \(")

Where:

ä = ./~6 s(")

BGAN	– IS	intuition
& " ! "

IS	proxy	with	optimal	
discriminator	D

• Divergence	between				should	have	lower	variance	than	if	
taking	arbitrary	samples	from	! "

• Since	% # defines	a	distribution	that	" is	sampled	from	-
the	variance	can	be	further	decreased	by	taking	multiple	
samples	from	the	same	z

BGAN	– reduced	variance
We	can	restate	everything	in	terms	of	conditional	distributions:

• \(") 	= ∫ 4 "|# ℎ # _#å

• 4 "|# : ç	 → [0,1]P - multivariate	Bernoulli	distribution

• ê # = ./~X /|< s(") - similar	to	ä

• N̂ "|# = ë(/)
í < 4 "|#

• +ìî N̂ " ||\(") =.=(<)[+ìî N̂ "|# ||\("|#)]

• ∇.=(<)[+ìî N̂ "|# ||\("|#)] approximates	with	two	MC

BGAN	- Algorithm

Boundary	Seeking	GAN	- BGAN

N̂ " = ë(/)
ñ \(")										s(") = (�Y

∗

�o)(+
∗("))

+Y !Póeó||!n ≥ 	max
g

./~1òôöô j ∘ + " − ./~1õ]
∗ j ∘ + "

BGAN	– Experiments

BGAN	– Experiments

BGAN	– Continuous	case
Recall:

%∗ = lm4min
n
+Y !Póeó||!n 	

+Y !||& = ./~6]
^ "
\ " = ./~6 sup

e
b
^ "
\ " −]∗ b

⇕
^ "
\ " 	=(

ù]∗

ù+)(+
∗("))=w(x)

⇕
%∗ = lm4min

n
(234s(%(#)))K	

⇕
%∗ = lm4min

n
+(%(#))K	

^ " = \ " when	s(") = 1

Max	when	∇ b U /
Ç /

−]∗ b =0

BGAN	– Continuous	case
f	– GAN:
%∗ = lm4min

n
./~1 j ∘ + " − .<~=(<)]∗ j ∘ + %(#)

GAN	(Proxy	GAN):
%∗ = lm4min

n
./~1 234+ " + .<~=(<) log	 1 − + % #

BGAN:
%∗ = lm4min

n
.<~=(<)+(%(#))K	 	⟺ 		s " = 1		 ⟺ 		^ " = \ "

BGAN	– Continuous	Experiments

BGAN	– Continuous	Experiments
• Generator	trained	for	5	steps	for	every	1	step	of	the	

discriminator

BGAN	– Continuous	Experiments
• Train	a	DCGAN	using	the	proxy	loss.
• Train	the	discriminator	for	1000	more	steps
• Perform	gradient	descent	directly	on	the	pixels

BGAN	– Continuous	Experiments

Discussion

