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Executive	Summary

• BGAN	is	framework	that	allows	GAN	to	generate	both	
discrete	and	continuous	data

• Discriminator	is	trained	by	maximizing	the	f-divergence	
between	the	data	and	generated	distributions

• Generator		is	trained	to	minimize	the	f-divergence	between	
the	generated	distribution	and	a	self-normalized	importance	
sampling	(SIS)	estimation	of	the	data	distribution	

• Experiments	show	state	of	the	art	results	in	training	GANs	
on	discrete	data	generation	and	high	stability	in	training	
GANs	with	continuous	data.
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Basic	Idea	of	GAN

• The	data	we	want	to	generate	has	a	distribution	
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Basic	Idea	of	GAN

• A	generator	G	is	a	network.	The	network	defines	a	
probability	distribution.	

generator	
G# " = % #

Normal	
Distribution

& " ! "

As	close	as	
possible

https://blog.openai.com/generative-models/

It	is	difficult	to	compute	& "
We	can	only	sample	from	the	
distribution.



Basic	Idea	of	GAN



GAN	Intuition



GAN	Formally
• Value	Function:

• Monte-Carlo	Approximation:

• Discriminator	target:

• Generator	target:
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• In	each	training	iteration:
• Sample	m	examples	 "F, "K, … , "G from	data	distribution	
! "

• Sample	m	noise	samples	 #F, #K, … , #G from	the	prior	
ℎ #

• Obtaining	generated	data	 "NF, "NK, … , "NG ,	"NI = % #I
• Update	discriminator	parameters	OP to	maximize	
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• QP ← QP + ST'C QP
• Sample	another	m	noise	samples	 #F, #K, … , #G from	the	
prior	!UVIWV #

• Update	generator	parameters	OX to	minimize
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G
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• OX ← OX − ST'C OX

Algorithm
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f	- GAN	Introduction

• Sebastian Nowozin, Botond Cseke, Ryota
Tomioka, “f-GAN:	Training	Generative	Neural	
Samplers	using	Variational Divergence	Minimization”, 
NIPS, 2016

• One sentence: you can use any f-divergence
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f	is	convex

f(1)	=	0

f-divergence ! and	& are	two	distributions.	^ " and	q "
are	the	density	functions	respectively.

• Every	convex	function	f	has	a	conjugate	function	f*
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D is	a	function	whose	input	is	x,	and	output	is	t

Connection	with	GAN
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Connection	with	GAN
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GAN	value	function:
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Importance	Sampling  - Detour
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Boundary	Seeking	GAN	- BGAN
Theorem	1:	!	lt_	& as	in	f-GAN,	and	+∗ ∈ D satisfying:

+Y !||& = max
g

./~1 + " − ./~6 ]∗ + "

Then:	^ " = (�Y
∗

�o)(+
∗("))q(x)

Proof:

+Y !||& = ./~6 ]
^ "
\ " = ./~6 sup

e
b
^ "
\ " − ]∗ b

^ re-written	in	terms	of	\ and	a	scaling	factor	
w(x)= (�Y

∗

�o)(+
∗(")) – Importance	weights

U /
Ç /

=	
�Y∗ e
�e



Boundary	Seeking	GAN	- BGAN
BGAN	suggests	to	use	the	divergence	between	\(")	and	the	self	
normalized	importance	sampling	(IS)	estimation	of		^ " :
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Where:
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BGAN	– IS	intuition
& " ! "

IS	proxy	with	optimal	
discriminator	D

• Divergence	between				should	have	lower	variance	than	if	
taking	arbitrary	samples	from	! "

• Since	% # defines	a	distribution	that	" is	sampled	from	-
the	variance	can	be	further	decreased	by	taking	multiple	
samples	from	the	same	z



BGAN	– reduced	variance
We	can	restate	everything	in	terms	of	conditional	distributions:

• \(") 	= ∫ 4 "|# ℎ # _#å

• 4 "|# : ç	 → [0,1]P - multivariate	Bernoulli	distribution

• ê # = ./~X /|< s(") - similar	to	ä
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• +ìî N̂ " ||\(") =.=(<)[+ìî N̂ "|# ||\("|#) ]

• ∇.=(<)[+ìî N̂ "|# ||\("|#) ] approximates	with	two	MC



BGAN	- Algorithm



Boundary	Seeking	GAN	- BGAN
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BGAN	– Experiments



BGAN	– Experiments



BGAN	– Continuous	case
Recall:
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BGAN	– Continuous	case
f	– GAN:
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BGAN	– Continuous	Experiments



BGAN	– Continuous	Experiments
• Generator	trained	for	5	steps	for	every	1	step	of	the	

discriminator



BGAN	– Continuous	Experiments
• Train	a	DCGAN	using	the	proxy	loss.
• Train	the	discriminator	for	1000	more	steps
• Perform	gradient	descent	directly	on	the	pixels



BGAN	– Continuous	Experiments
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