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Adversarial patch

Tom B. Brown, Dandelion Mané, Aurko Roy, Martin Abadi, Justin Gilmer

e Arxiv 2017

* Example Code(Tensorflow):
https://github.com/tensorflow/cleverhans/tree/master/examples/
adversarial patch




Motivation

* |s it able to create a patch that fool the classifier?
e Universal: On every images
* Robust
* Targeted
* Real world



Real world example
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Figure 1: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble
method described in Section 3. When a photo of a tabletop with a banana and a notebook (top
photograph) is passed through VGG16, the network reports class "banana’ with 97% confidence (top
plot). If we physically place a sticker targeted to the class "toaster" on the table (bottom photograph),
the photograph is classified as a toaster with 99% confidence (bottom plot). See the following video
for a full demonstration: https://youtu.be/il1sp4X57TL4



Method

* Allow the patch to take any shape, any place, rotation/scale(Aim for the real-
world)

e Define a transformation function:




Method

 |[dea from “Expectation over transformation (From Synthesizing
robust adversarial examples, Arxiv 2017)”

p=argmaxE,x ¢~1i~L [log Pr(y|A(p, x,1,t)]
[)

* Generally, using projected gradient descent to optimize this object



Result
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Figure 3: A comparison of different methods for creating adversarial patches. Note that these success
rates are for random placements of the patch on top of the image. Each point in the plot is computed
by applying the patch to 400 randomly chosen test images at random locations in these images. This
is done for various scales of the patch as a fraction of the size of the image, each scale is tested
independently on 400 images.



Result —additional L2 penalty to a known
Image
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Figure 4: A comparison of patches with various disguises. We find that we can disguise the patch and
retain much of its power to fool the classifier.



Adversarial logit pairing

Harini Kannan, Alexey Kurakin, lan Goodfellow, Google Brain

* Defense against adversarial attack
* Use “logit paring”: Matching the logits
e Use adversarial training

arg min |i]E(-l'-y)€[3<ht'\ ( max L(6, z + 0, ;1/)) +
. . ata \ 02

E(z,9)€paata (L(Q, x, y))] (2)



Defense?

 Madry et al. (2017) suggests that PGD is a universal first order
adversary — in other words, developing robustness against PGD
attacks also implies resistance against many other first order attacks.



Logit pairing

* Logit pairing: pushing the distance between f(x) and f(x’)
AL (f(z), f(z'))

* L: Simple L2 Loss

Consider a model with parameters @ trained on a minibatch
M of clean examples {zV), ..., (™)} and corresponding

adversarial examples {Z1), ..., (™)}, Let f(x;0) be the
function mapping from inputs to logits of the model. Let
J (M, 0) be the cost function used for adversarial training
(the cross-entropy loss applied to train the classifier on each
example in the minibatch, plus any weight decay, etc.). Ad-

versarial logit pairing consists of minimizing the loss

m

J(M,0) + A=S" L (f(a:('i); 9), f(2?; 0)) .

m 4—



Experiment

* Baseline: Adversarial training

Method White Box Black Box Clean

M-PGD 93.2% 96.0% 98.5%
ALP 96.4 % 97.5% 98.8%

Table 1. Comparison of adversarial logit pairing and vanilla adver-
sarial training on MNIST. All accuracies reported are for the PGD
attack.



Adversarial Perturbation against Deep Neural
Networks for Malware Classification

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick McDaniel. Arxiv

* Problem setting:
* Andriod apis
* Represent the software as binary features

* Use deep small NN as the classifier, have >
95% accuracy

* Adv perturbation:
* L1norm - JSMA

e Result on defense:
* Feature reduction -> Doesn’t work

» Defense Distillation -> Have some effect, but
also reduce the performance

* Retraining -> Good

* Summary:
* Small network still suffer adversarial sample

Classifier MWR MR Distortion
[200] 0.4 81.89 11.52
[200] 0.5 79.37 11.92

[l(). l()] 0.3 69.62 13.15
[10, 10] 0.4 55.88 16.12
(10, 10] 0.5 84.05 11.48

[10,200] 0.3 75.47 12.89

[l()‘ 2()()] 0.4 55.70 14.84

[10, 200] 0.5 57.19 14.96

[2()(). l()] 0.3 50.07 14.96

[200, 10] 0.4 35.31 17.79

[2()(). l(]] 0.5 36.62 17.49

(100, 200] 0.4 74.93 12.87

[2()(). l()()] 0.4 71.42 13.12

[200, 100] 0.5 73.02 12.98

[50, 50] 0.3 61.71 15.37
[50, 50] 0.4 60.02 14.7
[5(). 5()] 0.5 40.97 17.64
[50, 200] 0.3 79.25 11.61
[50, 200] 0.4 69.44 13.95
[50, 200] 0.5 64.66 15.16
[200, 50] 0.3 66.55 14.99
[200, 50] 0.4 58.31 15.76
[200, 50] 0.5 62.34 14.54

[2()(). 2()()] 0.1 78.28 10.99

(200, 200] 0.2 63.49 13.43

[200, 200] 0.3 63.08 14.52

[200, 200] 0.4 64.01 14.84

[200, 200] 0.5 69.35 13.47

[200, 300] 0.3 70.99 13.24

[20(). 3()()] 0.4 61.91 14.19

[300, 200] 0.2 69.96 13.62

[3(]()‘ 2()()] 0.4 63.51 14.01

[200, 200, 200] 0.1 75.41 10.50
[200, 200, 200] 0.4 71.31 13.08
[200, 200, 200, 200] 0.4 62.66 14.64

Table 4: Performance of our adversarial sampling
strategy. The misclassification rates (MR) and re-
quired average distortion (in number of added fea-
tures) with a threshold of 20 modifications are given
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Black-Box Attacks against RNN based Malware
Detection Algorithms

* Weiwei Hu and Ying Tan, From Peking U
- Target model: Malware detection classifier
Formulate Malware detection as a sequential classification problem
Software = A sequence of APIs x41 , xd2 , xd3 ..xin

LSTM achieves 90%+ accuracy on their malware dataset



Method

Subtitute RNN

- Generator:
-A generative model trained to
insert malware APl into the
malware
- Subtitute RNN -> Simulate the _
original RNN .
- Data:
180 crawled mal/benign softwares

Training Set Test Set

Ongmal  Adver. Ornginal  Adver.
LSTM 92.54%  12.10% 90.74%  11.95%
BiLSTM 92.21% 1.06% 90.93% 0.95%
LSTM-Average 93.87% 1.40% 93.53% 1.36%
BiLSTM-Average  92.92% 1.83% 92.51% 1.67%
LSTM-Attention 93.67% 0.44% 92.45% 0.51%
BiLSTM-Attention 93.73% 3.02% 92.99% 3.03%

Classification

Attention

Bidirectional
Layer

Gumbel-Softmax

1
i Sampling

e e [

Decoder Layer

Recurrent Layer

Malware Input X, X, X,

Inserting

Adversarial Example X, T ar,

.

Black-Box Victim RNN

a,; *, x

Cross Entropy }



Black-box Attacks against RNN based malware
Detection Algorithm

* Summary
* Interesting target model: Easy to attack

* Simulation of model to make a black-box attack, and have
great performance: Worth a try

* Generate adversarial samples using NN?



Ensemble Adversarial Training: Attacks and
Defenses

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan Boneh, Patrick McDaniel

Three points:
1. Current defense approach are vulnerable to Black-box attack

Table 1: Error rates (in %) of adversarial examples transferred between models. We use the
FGSM with € = (.3 for MNIST and € = 16/256 (targeted at the least-likely class) for ImageNet.
Diagonal elements correspond to a white-box attack. Results on MNIST are computed over the
full test set; results on ImageNet use a random sample of 10,000 inputs from the test set. Note that
black-box attacks are more successful when the source and target models have different architectures.

Source Target Model Source Target Model Source Target Model
Model A ALgy B Model v3i  v3,,v v4  Model vi  v3ay V4
A 714 119 50.7 V3 69.7 358 39.2 v3 428 134 15.0
Aadv 24.7 3.6 254 V3, 36.4 268 31.1 v3.y 13.0 9.0 10.3
B 62.4 18.2 84.6 v4 43.8 36.5 60.2 v4 18.8 13.5 30.8

MNIST ImageNet (top 1) ImageNet (top 5)



Ensemble Adversarial Training: Attacks and
Defenses

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan Boneh, Patrick McDaniel

2.A new randnmized attark-
' =z + a-sign(N(0%,1%))
2 = 2" 4+ (¢ — a) - sign (Vo J (2, Yue)) -

Do a random perturbation first, and then use fast gradient sign, to escape the

nor\,omnn-l-lﬁ vicrinitvy AfFHhA mAAAD
Table 2: Error rates (in %) for FGSM and RAND+FGSM samples. On MNIST, we use € =

e Ha\ 0.3, = 0.05. On ImageNet, we use € = 16/256, « = 8/256. Results on MNIST are computed
over the full test set; on ImageNet, we use a random sample of 10,000 inputs from the test set.
A Ay B v3 v3adv v4 v3 V3adv v4
FGSM 71.4 3.6 84.6 69.7 26.8 60.2 42.8 9.0 30.8
RAND+FGSM 753 34.1 86.2 80.1 64.3 70.3 57.7 37.2 425

MNIST ImageNet (top 1) ImageNet (top 5)



Ensemble Adversarial Training: Attacks and Defenses

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan Boneh, Patrick McDaniel

* Ensemble adversarial training

e Trair fronm adviarcarial camnloac nf nthaoar mndegls

Table 4: Error rates (in %) for adversarial training and ensemble adversarial training on
MNIST. For the full test set, we report error rates on clean data, white-box FGSM (¢ = 0.3),
and FGSM, I-FGSM (e = 0.3, k = 10) and RAND+FGSM (e = 0.3, @ = 0.05) samples transferred
from the holdout model B. We also evaluate an attack by Carlini and Wagner (CW) [4] on a sample
of 1,000 test inputs (details are in Appendix G). We compute 95% confidence intervals for a normal
approximation of the mean test error and mark methods statistically tied for best in bold.

Model Clean FGSM FGSMp I-FGSMg RAND+FGSMgp CWg

A 0.9 71.4 62.4 79.4 583 824
6 epochs  A,gy 1.0 3.6 18.2 19.8 124  21.8
Aady-ens 0.9 11.8 5.0 9.7 34 137

12 epochs Ay 0.7 38 15.5 13.5 95 152
POCHS A iv-ens 0.7 6.0 3.9 6.2 29 7.0

Table 5: Error rates (in %) for adversarial training and ensemble adversarial training on Im-
ageNet. We report error rates on clean data and white-box FGSM (e = 16/256) over the full test
set. For a random sample of 10,000 inputs from the test set, we report error rates on FGSM and
RAND+FGSM (R+F) samples (¢ = 16/256, « = 8/256) transferred from a holdout Inception v4
model. All attacks are targeted at the least-likely class. We mark methods statistically tied for best in
bold, independently for both architectures (based on 95% confidence intervals).

Top 1 Top 5§
Model Clean FGSM FGSM,y R+Fy4y Clean FGSM FGSM,;y R+Fy
v3 22.0 69.8 43.8 42.8 6.1 428 18.9 17.4
V3aav [8] 22.0 26.8 36.5 30.8 6.1 9.0 13.5 10.4
V3.dv-ens3 23.6 30.0 304 29.9 7.6 10.4 10.2 9.7
V3ady-ens4 242 43.1 29.6 29.1 7.8 19.5 9.6 9.5
IncRes v2 19.6 513 38.0 36.8 4.8 23.9 14.1 13.0

IncRes V2agyens 202 259 246 250 5.1 7.7 6.8 7.2




Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods

Nicholas Carlini, David Wagner

e Detection methods:

e Secondary classification based detection:
- Add a new class which is completely adversarial samples
- Or train a new classifier on the new class

Result: it can detect adversarial samples, but if the attacker target the defended
model, it failed

* Train a model on the inner convolutional layer to detect

* Result: : it can detect adversarial samples, but if the attacker target the
defended model, it failed

 PCA based:

* Adversarial put a higher weight on larger principal components

. Reqﬁire the dataset including boundary points. If the data is normalized, it doesn’t
work.

* Reduce the dimension:
* Not effective

* PCA on hidden layer:
* Doesn’t work.



Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods

Nicholas Carlini, David Wagner

 Detection methods:

e Distributional detection:
e Statistical test: Doesn’t work

* Kernel Density Estimation: Use a gaussian mixture model to produce
outputs from the final hidden layer

* On MNIST, it works. But on CIFAR, it failed.

* Dropout Randomization: Random layer + Distributed

e Successful at simple case, but failed when use a different optimized
attack.

 Mean blur: 3*3 filter.
* Successful at simple case. But failed when targeted



Extending defense distillation

Nicolas Papernot, Patrick McDaniel

* Original defense distillation:
* Use the probability output as the training data of the distilled model

* Use a temperature T in the softmax formula to reduce the size of the gradient

* Modified defense distillation:
» Add a class of uncertain in the probability output, and use it to train the

mndaol
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Adversarial Attacks on Stochastic Bandits

NIPS 18
Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu

e Abstract

 We study adversarial attacks that manipulate the reward signals to
control the actions chosen by a stochastic multi-armed bandit
algorithm. We propose the first attack against two popular bandit
algorithms: egreedy and UCB, without knowledge of the mean
rewards. The attacker is able to spend only logarithmic effort,
multiplied by a problem-specific parameter that becomes smaller as
the bandit problem gets easier to attack. The result means the
attacker can easily hijack the behavior of the bandit algorithm to
promote or obstruct certain actions, say, a particular medical
treatment. As bandits are seeing increasingly wide use in practice,
our study exposes a significant security threat.




Adversarial attack

e Attack on bandit algorithm: Give a bad reward

Algorithm 1 Alice’s attack against a bandit algorithm

1: Input: Bob’s bandit algorithm, target arm K

2: fort=1,2,...do

3 Bob chooses arm /; to pull.

4:  World generates pre-attack reward r?.

5 Alice observes I; and 7’?, and then decides the attack ay.
6:  Alice gives r; = r{ — o to Bob.

7: end for




Main result - UCB

Theorem 2. Suppose T > 2K and 6 < 1/2. Then, with probability at least 1 — 0, Alice forces Bob
to choose the target arm in at least

2
T— (K —1) (2+ 9121og:r),
A()

rounds, using a cumulative attack cost at most

T 2 2K (24 225 log T)?
9 902

Y a < (2+%logT> E:(Ai+A0)+o(K—1)J32(2+ %logT)log 3?0 .

t=1 0 i<K 0



Towards Robust Detection of Adversarial Examples

NIPS 18
Tianyu Pang, Chao Du, Yinpeng Dong, Jun Zhu

e Abstract:

* Although the recent progress is substantial, deep learning methods can be
vulnerable to the maliciously generated adversarial examples. In this paper, we
present a novel training procedure and a thresholding test strategy, towards
robust detection of adversarial examples. In training, we propose to minimize the
reverse crossentropy (RCE), which encourages a deep network to learn latent
representations that better distinguish adversarial examples from normal ones.
In testing, we propose to use a thresholding strategy as the detector to filter out
adversarial examples for reliable predictions. Our method is simple to implement
using standard algorithms, with little extra training cost compared to the
common cross-entropy minimization. We apply our method to defend various
attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve
significant improvements on robust predictions under all the threat models in the
adversarial setting.



Threat model

Oblivious adversaries are not aware of the existence of the detector D and generate
adversarial examples based on the unsecured classification model F'.

White-box adversaries know the scheme and parameters of D, and can design special
methods to attack both the model F' and the detector D simultaneously.

Black-box adversaries know the existence of the detector D with its scheme, but have no
access to the parameters of the detector D or the model F'.



Attacks

Fast Gradient Sign Method (FGSM): Goodfellow et al. [12] introduce an one-step attacking
method, which crafts an adversarial example x* as * = x+e€-sign(V,L(x,y)), with the perturbation
e and the training loss L(z, y).

Basic Iterative Method (BIM): Kurakin et al. [18] propose an iterative version of FGSM, with the
formula as 7 = clip, (2} ; + & -sign(Vy:  L(z}_,,y))), where xf = z, r is the number of

iteration steps and clip,, (-) is a clipping function to keep x in its domain.

Iterative Least-likely Class Method (ILCM): Kurakin et al. [18] also propose a targeted version of
BIM as zj = clip,  (2;_; — & -sign(Vg:  L(x]_1,yu))), where x5 = z and y; = arg min; F'(z);.
ILCM can avoid label leaking [19], since it does not exploit information of the true label y.

Jacobian-based Saliency Map Attack (JSMA): Papernot et al. [30] propose another iterative
method for targeted attack, which perturbs one feature x; by a constant offset € in each iteration step
that maximizes the saliency map
0, if 258w < 0 or o) > o,
S ( T t)[ { Z] #Y

Jdx;

()F(I) )‘Z#y ‘)P:(?) , otherwise.

ozx; dx;

Compared to other methods, JSMA perturbs fewer pixels.

Carlini & Wagner (C&W): Carlini and Wagner [2] introduce an optimization-based method, which
is one of the most powerful attacks. They define z* = 3 ! (tanh(w) + 1) in terms of an auxiliary
variable w, and solve the problem min,, ||3(tanh(w) + 1) — z||3 + ¢ - f( (tanh(w) + 1)), where
c 1s a constant that need to be chosen by modiﬁed binary search. f(-) is an objective function as
f(z) = max(max{Z, ()i : i # Yy} — Zpre()i, —K), Where k controls the confidence.



Reverse cross-entropy training

* Goal: Encourage uniformity among the non-maximal elements of F(x)

e Loss 1: |
Lop(x,y) = Loe(z,y) — X R, log F(x),

* Problem of Loss 1: Not pushing to the truth

* Loss 2:
LEL(x,y) = —R; log F'(x).



Result:

Attack Ob;. MNIST . CIFAR-10 .

Confidence non-ME K-density | Confidence non-ME K-density

FGSM CE 79.7 66.8 98.8 () 71.5 66.9 99.7 (-)
RCE 08.8 08.6 99.4 (*) 02.6 914 98.0 (%)

BIM CE 88.9 70.5 90.0 (-) 0.0 64.6 100.0 (-)
RCE 91.7 90.6 91.8 (*) 0.7 70.2 100.0 (%)

ILCM CE 08.4 50.4 96.2 (-) 16.4 37.1 84.2 (-)
RCE 100.0 97.0 98.6 (*) 64.1 77.8 93.9 (%)

ISMA CE 08.6 60.1 97.7 (-) 99.2 27.3 85.8 (-)
RCE 100.0 99.4 99.0 (*) 99.5 91.9 95.4 (%)

C&W CE 98.6 64.1 994 (-) 99.5 50.2 95.3 ()
RCE 100.0 99.5 99.8 (*) 99.6 04.7 98.2 (%)

CE 0.0 40.0 91.1 (-) 0.0 28.8 75.4 (-)

C&W-he | peE 0.1 934 | 99.6 (%) 0.2 53.6 91.8 (*)




