Black-box Generation of
Adversarial Text
Sequences to Evade Deep
Learning Classifiers

By: Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi
Presented by: Jennifer Fang [Week 02]

Department of Computer Science: University of Virginia

https://qdata.github.io/deep2Read/

Black-box Generation of Adversarial Text
Sequences to Evade Deep Learning Classifiers

Goal: Create a new algorithm for black box testing to
generate small text perturbations to cause deep-learning
classifiers to misclassify a text input.

The new algorithm created is called DeepWordBug.

Black Box vs. White Box Testing

Black box testing: testing as if you are a hacker i.e. no
knowledge of the inside workings, don’t know details of learned
models or feature representations of inputs
o Can only manipulate input samples by testing and observing
a classification model’s outputs
o Usually it’s easy to query a model
o But there’s no access to the inner structure of the models,
which makes black box more applicable than white box
White box testing: testing with full knowledge of the
application
Both black and white box testing cannot modify the model

Key Terms

e Hyperparameter: a parameter whose value is set before the
experiment
o Instead of deriving its value through training, this

parameter has a set value

e Adversarial samples: inputs intentionally designed to cause the
model to make a mistake

e Transferability: an important property where samples that are
generated for one model can also be used to fool another DNN
model

Goal of DeepWordBug

Proven that: Adding small modifications to text inputs can
fool deep learning classifiers

Question to answer: Are deep learning classifiers robust?
Results have implications in text-based spam detection.

Two types of modifications to text input
x =x+Ax, ||Ax|l, <€, x' € X
F(x)# Fx")or F(x') =t

Targeted Untargeted

DeepWordBug Example

Positive review

A

(1) [Deep Learning Model }

Original T i T | i i T 1

sample: This film has a special plalce in my hea_lft

Adversarial This film has a special plcae in me herat
sample: \

(2) [Deep Learning Model }

v

Negative review

Differences of text vs. pictures

1.

Text input x is symbolic. Perturbation on x is hard to
define.

No metric has been defined to measure text difference.
Lp - norms makes sense on continuous pixel values, but
they don’t make sense on texts since they are discrete.

Basis of DeepWordBug

1. Determine the important tokens to change.
e Use scoring functions to evaluate
2. Change those tokens
e Create “imperceivable” changes which can evade a target
deep learning classifier

Scoring Functions

1. Replace-1 Score

® Replace one Xi Wlth Xi, This is |definitely|my favorite restaurant
o RlS(Xi) = F(Xl, XZ" LECECREY Xi-l" Xi, e o 0oy Xn) e | Model e
' is is | :
= F(Xs Xy wvey Xigs X5 oeeey X)) s

This is definitely — Model = 0.998
2. Temporal Head Score | g P
my favorite restaurant W Model ‘ :

e Difference between the model’s prediction definitely my favorite restaurant W “40-969
Mode]
score as it reads up to the it" token and Combined Score of “Nefinitely —
Head 0.998-0.586=0.412
as it reads up to the i-1%" token Tail |0969-0.608-0361
Combined | 0.412+0.361=0.773

o THS(Xx,) = F(X,, X,5 «-es X, 5 X;) = F(X},

Xys wees X)

Replace-1 This is definitely my favorite restaurant
L 2 l I

Scoring Functions

This is definitely my favorite restaurant

Temporal

3. Tempor'al Tail Score Temporal Tail This is definitely my favorite restaurant

e

e The complement of the THS

e (ompares the difference between two trailing parts of a sentence, the one
containing a certain token versus the one that does not.

® TTS(X,) = F(Xis X415 Xios »ees X)) = F(Xi 1o Xins ooy X))

4. Combination Score

e THS and TTS model from opposing sides, so the Combination Score combines the
two

o (S(x;) = THS(x,) + A(TTS(x,))

e A is a hyperparameter

Text Transformations

Swap: Swap two adjacent letters in the word.
Substitution: Substitute a letter in the word with a
random letter.

Deletion: Delete a random letter from the word.
Insertion: Insert a random letter in the word.

Original Swap Substitution = Deletion Insertion
Team =2 Taem Texm Tem Tezam
Artist - Artsit Arxist Artst Articst

Computer — Comptuer Computnr Compter = Comnputer

Table 1: Different transformer functions and their results.

DeepWordBug Algorithm

Algorithm 1 DeepWordBug Algorithm

Input: Input sequence x = x1x3 . . . x,, RNN classifier F(-),
Scoring Function S(-), Transforming function T(-), maximum
allowed pertubation on edit distance €.

10: end while
11: Return x’

1: fori=1..ndo
2. scores[i] = S(xi;x) Apply Scoring Function
3: end for |
4: Sort scores into an ordered index list: L; .. L, by descending |

score |
5 X’ = |
6: cost=0,j=1 |
7: while cost < € do |
8: <-:ost = cost + Transform(xij) Transform Text
9: J++ |

|

Return x’

Experiment Setup

1. Datasets: 7 large scale datasets, including Enron Spam
Dataset
2. Target models: 2 well trained models
- Word-LSTM: a Bi-directional LSTM, which contains an LSTM
in both directions (reading from first word to last and
from last word to first) [used 4 different transformers]
- Char-CNN: uses one-hot encoded characters as inputs to a
9-layer convolutional network [only used substitution
transformer]

Comparison methods

1. Random (baseline): randomly selects tokens as targets

2. Gradient (baseline): uses full knowledge of the model to
find most important tokens

3. DeepWordBug: use previously described white-box scoring
functions to find most important tokens: Replace 1
Scoring, Temporal Head Score, Temporal Tail Score,
Combined Score

Additional Parameter

€ = maximum allowed perturbation; maximum allowed edit
distance (in characters)

Word-LSTM Model

Baselines WordBug

Original Random Gradient Replace-1 Temporal Head Temporal Tail Combined

Acc(%) Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease
AG’s News 90.5 89.3 1.33% 48.5 10.13% 36.1 60.08% 42.5 53.01% 21.3 76.48% 24.8 72.62%
Amazon Review Full 62.0 61.1 1.48% 55.7 10.13% 18.6 70.05% 27.1 56.30% 17.0 72.50% 16.3 73.76%
Amazon Review Polarity 95.5 93.9 1.59% 86.9 8.93% 40.7 57.36% 58.5 38.74% 42.6 55.37% 36.2 62.08%
DBPedia 98.7 95.2 3.54% 74.4 24.61% 28.8 70.82% 56.4 42.87% 28.5 71.08% 25.3 74.32%
Yahoo! Answers 734 65.7 10.54% 50.0 31.83% 279 61.93% 34.9 52.45% 26.5 63.86% 23.5 68.02%
Yelp Review Full 64.7 60.9 5.86% 53.2 17.76% 234 63.83% 36.6 43.47% 20.8 67.85% 24.4 62.28%
Yelp Review Polarity 95.9 95.4 0.55% 88.4 7.85% 37.8 60.63% 70.2 26.77% 34.5 64.04% 46.2 51.87%
Enron Spam Email 96.4 67.8 29.69% 76.7 20.47% 39.1 59.48% 56.3 41.61% 25.8 73.22% 48.1 50.06%
Mean 6.82% 16.46% 63.02% 44.40% 68.05% 64.38%
Median 2.57% 13.95% 61.28% 43.17% 69.46% 65.15%
Standard Deviation 9.81% 8.71% 4.94% 9.52% 6.77% 9.56%

Char-CNN Model

Baselines WordBug

Original Random Gradient Replace-1 Temporal Head Temporal Tail Combined

Acc(%) Acc(%) | % Decrease | Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease | Acc(%) | Decrease
AG’s News 90.0 82.4 8.36% 62.3 30.74% 30.8 65.80% 74.1 17.66% 58.6 34.90% 60.4 32.88%
Amazon Review Full 61.1 51.0 16.53% 47.0 23.04% 25.6 58.17% 58.1 4.89% 325 46.79% 35.0 42.70%
Amazon Review Polarity 95.2 93.4 1.91% 84.3 11.41% 46.4 51.27% 91.6 3.79% 70.9 25.48% 73:5 22.83%
DBPedia 98.4 95.8 2.58% 92.9 5.60% 74.9 23.91% 95.7 2.73% 88.2 10.37% 88.8 9.69%
Yahoo! Answers 71.0 52.2 26.45% 43.5 38.76% 30.0 57.72% 56.8 20.05% 35.3 50.23% 36.6 48.50%
Yelp Review Full 63.5 52.6 17.05% 45.7 28.06% 27.6 56.56% 51.3 19.10% 353 44.36% 38.2 39.74%
Yelp Review Polarity 95.3 91.2 4.31% 84.8 11.03% 42.8 55.05% 86.5 9.16% 71.9 24.51% 711 25.33%
Enron Spam Email 95.6 85.5 10.56% 69.0 27.84% 76.4 20.13% 85.1 11.03% 78.7 17.68% 75.4 21.14%
Mean 10.97% 22.06% 48.58% 11.05% 31.79% 30.35%
Median 9.46% 25.44% 55.80% 10.10% 30.19% 29.11%
Standard Deviation 8.54% 11.53% 16.91% 7.10% 14.56% 12.93%

Table 5: Effectiveness of WordBug on 8 Datasets using the Word-LSTM and Char-CNN model. Acc is the accuracy of the method and Decrease is the percent
decrease of the accuracy by using the specified attacking method over the original accuracy. Word-LSTM uses Substitution transformer. All results are under
maximum edit distance difference 30 (¢ = 30).

Relative Performance Decrease(%)

Decrease in Performance

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

l

68.05%
64.38%

63.02%
44.40%
16.36%
6.82%

Random Gradient Replace-1 Temporal Temporal Combined

\ Head Tail Y,
Y

DeepWordBug

60.00%

50.00%

»
o
(=
]
B3

30.00%

[
o
(=
2
B3

‘8 10.00%

Relative Performance Decrease(%)

0.00%

N s

]

48.58%

31.79%

30.35%

22.06%
10.97% 11.05%

Random Gradient Replace-1 Temporal Temporal Combined

N

Head Tail

J

Y
DeepWordBug

Results

1. Accuracy: reduced 68% performance of the Word-LSTM model and 48%
performance of the Char-CNN model
2. Influence of the Scoring Function: very important
a. DeepWordBug’s scoring is better than the gradient
b. Without scoring (random case), adversarial performance is low
3. Transferable? Yes, even for models with different word embedding
4. Influence of Transformation Function: wasn’t much difference within
the functions; having a good scoring function is more important
5. Influence of Dictionary size: low; works for all dictionary sizes
6. Probability of classifications: 94.6% of classifications were
classified with > 0.9 confidence for Word-LSTM model on the Enron
Spam Dataset (# classes = 2), € = 30

Transferability and Confidence

From

LSTM2

LSTM1

BiLSTM1

BiLSTM2

100
100.0% 94.6%
90.0%
80 80.0%
70.0%
60.0%
60 50.0%
40.0%
30.0%
40 20.0%
100% 2.0% 1.5% 0.8% 1.1%
0.00/0 — e —
20 >0.9 0.8-0.9 0.7-08 0.6-0.7 0.5-0.6
Figure 12: How strong the machine learning model will believe the wrong
0 answer lead by the adversarial sample, the x-axis are the confidence range
LSTMA1 BiLSTMA1 LSTM2 BiLSTM2 and the y-axis are the probability distribution. The result is generated using
To Word-LSTM model on the Enron Spam Dataset (Number of classes = 2), with

edit distance maximum € = 30

Applications

Adversarial training: with training on DeepWordBug,
adversarial accuracy improves from 12% to 62%

Autocorrection: reduces the performance of adversarial
samples; can combat this with stronger transformation
functions such as substitution-2 and deletion-2

Why DeepWordBug Works

- When changes are made to a word, the word becomes
unknown, which map to the unknown embedding vector

- Small changes can thus make a big impact

- Adversarial samples are probably decipherable to humans,
but not to models

- Area for ML to catch up with humans

Advantages:

1.

2.

Black-box: DeepWordBug generates adversarial samples in a pure black-box
manner.
Performance: DeepWordBug results in a 68% decrease on average from the
original classification accuracy for a word-level LSTM model and 48%
decrease on average for a character-level CNN model.

- Results are transferable and are not reliant on dictionary size or

transformation technique used

Applications: adversarial training is successful; by using DeepWordBug
generated samples, model accuracy on generated adversarial samples increases
from 12% to 62%

