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Introduction

e Predictive ML models have widespread usage in genomics.

e Despite importance of these models, it is very difficult to share and exchange
models effectively.

e No established standard for sharing trained models.

e Challenge: heterogeneity of genomics technologies, techniques and
frameworks, many specific data pre-processing strategies, and ease-of use
for practitioners not expert in machine learning

e \What: API and repository of ready-to-use genomics models.

e Goal: foster the dissemination and use of machine learning models in
genomics.
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Approach

e Standardized data handling (data-loaders) for genomic data types
e 2000 trained models on Github
e API for accessing models
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Benchmarking of Alternative Models Predicting
Transcription Factor Binding

e Different modeling paradigms, including methods based on classical position
weight matrices (PWM), gapped k-mer support vector machines (Isgkm-SVM)
and deep learning (DeepBind, DeepSEA, and FactorNet)

e Kipoi model implementations derived from publications, trained by authors,
and assessed on chromosome 8 which was not used in training.

e Originally cumbersome task: different software frameworks, different file
formats for input, different prediction formats, different software
dependencies..
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Figure 2 | Applying and benchmarking alternative Kipoi models for transcription factor binding
prediction. (a) Five models for predicting transcription factor binding that are based on alternative
modeling paradigms: i) predefined position weight matrices contained in the HOCOMOCO database®;
ii) lsgkm-SVM?, a support vector machine classifier; iii) the convolutional neural network DeepBind®;
iv) the multi-task convolutional neural network DeepSEA; v) FactorNet, a multimodal deep neural
network with convolutional and recurrent layers that further integrates chromatin accessibility profile
and genomic annotation features. Models differ by i) the size of genomic input sequence, where
DeepSEA® and FactorNET’ consider ~1 kb sequence inputs, whereas other models are based on
~100 bp, and ii) parametrization complexity with the total size of model parameters ranging from 16kB
(pwm_HOCOMOCO) to 200 Mb (DeepSEA). (b) Performance of the models in a for predicting
ChIP-seq peaks of four transcription factors on held-out data (chromosome 8), quantified using the
area under the precision-recall curve. More complex models yield more accurate predictions than
basic models which are commonly used. (c) Example access to Kipoi models via the command line
interface to install required software dependencies, download the model, extract and pre-process the
data, and write predictions to a new file. Results as shown in b can be obtained for all Kipoi models
using this generic command. Placeholder <Model> can be any of the models listed in a.



Improving Predictive Models of Chromatin
Accessibility using Transfer Learning

Transfer learning for adapting/reusing models for a similar task.

Enables more rapid training, requires less data to train, and improves predictive
performance compared to models trained from scratch.

Example: edge detection for images or transcription factor motifs in genomics are
repeat problems in DNN.

Started with 431 biosamples, held-out 10, leaving 421 for training a genome-wide
model for predicting chromatin accessibility.

For 10 held-out samples, trained a new model while keeping all but last 2 layers fixed
during training.

Transfer model ~15.2% improvement in area under precision-recall curve compared to
model initialized with random parameters.

2.8 epoch average vs 17.3 epoch average training improvement.
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Figure 3: Adapting existing models to new tasks (transfer learning). (a) Architecture of
alternative models for predicting chromatin accessibility from DNA sequence. Model parameters are
either randomly initialized (left) or transferred from an existing neural network pre-trained on 421 other
biosamples (cell lines or tissues, right). (b) Prediction accuracy measured using the area under the
precision-recall curve, comparing randomly initialized (light blue) versus pre-trained (dark blue)
models. Shown is the performance on held-out test data (chromosomes 1, 8 and 21) for 10
biosamples that were not used during pre-training. (¢) Training curves, showing the area under the
precision-recall curve on the validation data (chromosome 9) as a function of the training epoch. The
dashed vertical line denotes the training epoch at which the model training is completed. Pre-trained
models require fewer training epochs than randomly initialized models and they achieve more

accurate predictions.



Predicting the Molecular Effects of Genetic Variants
using Interpretation Plugins

e Perform variant annotation and in-silico mutagenesis by contrasting model
predictions for the reference allele and for the alternative allele.

e If the model can be applied across the entire genome, such as chromatin
accessibility models, sequences centered on the queried variants are
extracted.

e [f the model can only be applied to regions anchored at specific genomic
locations, such as splicing models at intron-exons junctions, only sequences
extracted from valid regions that overlap with the variants of interest are used.

e Ease of use for plugins and feature importance algorithms.
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Figure 4: Variant effect prediction and feature importance scores. (a) Schema of variant effect
prediction using in-silico mutagenesis. Model predictions calculated for the reference allele and the
alternative allele are contrasted and written into an annotated copy of the input variant call format file
(VCF). (b) Kipoi uniformly supports variant effect prediction for models that can make predictions
anywhere in the genome (top) and also for models that can make predictions only on predefined
regions such as exon boundaries (bottom). (c) Generic command for variant effect prediction. (d)
Generic command to compute the importance scores using in-silico mutagenesis (e) Feature
importance scores visualized as a mutation map (heatmap, blue negative effect, red positive effect)
for variant rs35703285 and the predicted GATA2 binding difference between alleles for 4 different
models. The black boxes in the mutation maps highlight the position and the alternative allele of the
respective variant. Additionally, stars highlight variants annotated in the human variant database
ClinVar with red: (likely) pathogenic, green: likely benign, grey: uncertain or conflicting significance,
other.



Predicting Pathogenic Splice Variants by Combining
Models

e Advantages of combining models include: (1) combined scores can cover
multiple biological processes, and (2) they are more robust because they
average out conflicting predictions of individual models.

e Combined models were i,ii) 5 and 3’ MaxEntScan8 , a probabilistic model
scoring donor and acceptor site regions that was trained on splice sites with
cDNA support, iii) HAL9 , a k-mer based linear regression model scoring
donor sites that was trained on a massively parallel reporter assay in which
hundreds of thousands of random sequences probed the donor site sequence
space9 , and iv) Labranchor, a deep-learning model scoring the region
upstream of the acceptor site for possible branchpoint locations that was
trained from experimentally mapped branchpoints.
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Figure 5: Composite models using Kipoi for improved pathogenic splice variant scoring. (a)
lllustration of composite modelling for mRNA splicing. A model trained to distinguish pathogenic from
benign splicing region variants is easily constructed by combining Kipoi models for complementary
aspects of splicing regulation (MaxEntScan 3’ models acceptor site, MaxEntScan 5 and HAL model
donor sites, labranchor models the branchpoint) and phylogenetic conservation. These variant scores
are combined by logistic regression to predict the variant pathogenicity (orange box). (b) Different
versions of the ensemble model were trained and evaluated in 10-fold cross-validation for the
dbscSNV and ClinVar datasets (Methods). The four leftmost models are incrementally added to the
composite model in chronological order of their publication: the leftmost point only uses information
from the MaxEntScan/3prime model, while “+conservation (KipoiSplice4)" uses all four models and
phylogenetic conservation. These performances were compared to a logistic regression model using
state-of-the-art splicing variant effect predictors (SPIDEX, SPIDEX+conservation, dbscSNV).
KipoiSplice4 achieves state-of-the-art performance on the dbscSNV dataset and outperforms
alternative models on ClinVar which contains a broader range of variants (c) Fraction of unscored
variants for different models in the dbscSNV and ClinVar datasets.
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Discussion

e Unified interface to models, automated installation, and nightly tests.

e Repository and programmatic standard for sharing and reuse of trained
models in genomics.

e Pre-computed predictions cannot be extended for new or different input data

e Trained models can be generative, data-modelling distributions. This saves
space and time in computing and storing relevant results.

e API contribution brings balance between structure and no structure.
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Future Work

e Open challenges for key predictive tasks in genomics with platforms like
DREAM or CAGI and make the best models available in Kipoi.

e Continuously update state-of-the-art models.

e More exploration of composite models to capture how genetic variation
propagates through successive biological processes.
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